SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a sentence-transformers model finetuned from cointegrated/LaBSE-en-ru. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/LaBSE-en-ru
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Solomennikova/labse_funetuned_hoff")
# Run inference
sentences = [
'набор кружек',
'{"product_name": "Каркас кровати Селена цвет кашемир", "Бренд": null, "Цвет": "кашемир", "Материал": null, "description": "Коллекция Селена представлена в трендовых оттенках Сантьяго и Кашемир, что придает ей современный вид. Фасады с покрытием Soft-touch приятны на ощупь и создают уютную атмосферу. В классическом стиле с рамочными фасадами в пленке ПВХ, коллекция также включает утолщенные колпаки модулей с фрезеровкой в древесной пленке. Петли Titus из Словении с возможностью установки демпфера обеспечивают долговечность, а скрытые направляющие с доводчиком гарантируют плавное и бесшумное закрывание ящиков. Цоколи в нижней части моделей добавляют яркий акцент и завершенность дизайну. \\nОснование в комплект не входит.", "Производитель": "Россия"}',
'{"product_name": "Матрас пружинный MILDEX Memphis 140х200 см", "Бренд": "MILDEX", "Цвет": null, "Материал": null, "description": "Пружинный матрас Memphis средней жёсткости. В основе матраса используется независимый пружинный блок «Hard Pocket» плотностью 500 пружин на спальное место. \\n Уникальная пена повышенной плотности Bi-foam, обладающая анатомическим эффектом, равномерно распределяет нагрузку по всей площади матраса.Природный комбинированный наполнитель Bi-Cocos обеспечивает оптимальную жесткость. Сочетание двух этих материалов с пружинным блоком Hardpocket в матрасе, прекрасно воспринимает даже большие нагрузки, оказывая необходимую анатомическую поддержку, что благоприятно сказывается на качестве сна. \\n Мягкий трикотажный чехол с высокообъёмной стежкой поможет расслабиться после напряженного дня. \\n Особенности:\\n - Использование природных материалов", "Производитель": "Россия"}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 86,732 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 5.28 tokens
- max: 29 tokens
- min: 51 tokens
- mean: 126.16 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 комод
{"product_name": "Придиванный стол Агами", "Бренд": null, "Цвет": "Белый,Чёрный", "Материал": null, "description": "Компактный, устойчивый, многофункциональный – набор качеств придиванного стола Агами делает его отличным выбором для любой комнаты и целей. Модель можно использовать для сервировки закусок во время семейных киносеансов, работы с ноутбуком, рисования, в качестве подставки для швейной машины. С-образная конструкция каркаса позволяет расположить столик с максимальным удобством: сбоку от кресла, с фронтальной стороны дивана, рядом с сиденьем или так, чтобы столешница располагалась над подлокотником. Минималистский дизайн изделия создает нейтральный фон для предметов декора.", "Производитель": "Россия"}
ковер
{"product_name": "Унитаз-компакт AM.PM Spirit V2.0 C708600WH 36.5х85х63.5 см", "Бренд": "AM.PM", "Цвет": "белый глянцевый", "Материал": "фарфор", "description": "", "Производитель": "Россия"}
мойка
{"product_name": "Мойка с крылом GRANFEST Quarz GF-ZL-51 76х48х17.8 см", "Бренд": "GRANFEST", "Цвет": "чёрный", "Материал": "кварц", "description": "", "Производитель": "Россия"}
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.1844 | 500 | 2.7684 |
0.3689 | 1000 | 2.5477 |
0.5533 | 1500 | 2.4492 |
0.7377 | 2000 | 2.4187 |
0.9222 | 2500 | 2.4162 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.1
- Transformers: 4.50.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Solomennikova/labse_funetuned_hoff
Base model
cointegrated/LaBSE-en-ru