SentenceTransformer based on cointegrated/LaBSE-en-ru
This is a sentence-transformers model finetuned from cointegrated/LaBSE-en-ru. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/LaBSE-en-ru
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Solomennikova/labse_funetuned_hoff_40_epochs")
# Run inference
sentences = [
'качели для дачи',
'{"product_name": "Детский игровой комплекс Капризун", "Бренд": "NATIONAL TREE COMPANY", "Цвет": "белый, бирюзовый", "Материал": "массив сосны, металл, пластмасса", "description": "Детский игровой комплекс-кровать Капризун сделан из натурального дерева и рассчитан на детей в возрасте от 3 лет. В конструкции предусмотрены два спальных места, множество игровых элементов и спортивных снарядов. Игры с комплексом развивают воображение, улучшают координацию движений и ловкость, укрепляют мышцы.\\n Особенности:\\n • сделан из экологически чистого материала;\\n • поверхность дерева гладко отшлифована и покрыта краской на водной основе;\\n • текстиль и матрас в комплект не входят.", "Производитель": "Россия"}',
'{"product_name": "Поддон универсальный MELODIA DELLA VITA Round MTYRD8080Bk 80х16 см", "Бренд": "MELODIA DELLA VITA", "Цвет": "чёрный", "Материал": "акрил", "description": "", "Производитель": "Россия"}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 86,732 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 5.25 tokens
- max: 18 tokens
- min: 52 tokens
- mean: 125.86 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 комод
{"product_name": "Комплект стульев 305 54х75х54 см", "Бренд": null, "Цвет": "Коричневый", "Материал": null, "description": "", "Производитель": "Россия"}
freya
{"product_name": "Светильник подвесной FREYA Modern Blossom 12.5 кв.м., 31х170х31 см, G9", "Бренд": "FREYA", "Цвет": "Белый,Золотой", "Материал": null, "description": "", "Производитель": "Китай"}
комод
{"product_name": "Комод Деко", "Бренд": null, "Цвет": "Белый", "Материал": null, "description": "Комод Деко создан для тех, кто требует от мебели и функциональности, и элегантности. В конструкции модели предусмотрены выдвижные ящики различного размера и отделение с полками за распашной дверцей. В этом комоде найдётся место для самых разнообразных вещей: например, в трёх нижних ящиках будет удобно хранить домашний текстиль, одежду, коробки с обувью, в верхнем — косметику. Крышка, покрытая стеклом, идеальна как для размещения стильных интерьерных аксессуаров, так и для установки телевизионной панели. Модель изготовлена в минималистичном стиле, изысканную изюминку придаёт сочетание глянцевого фасада и сверкающей стеклянной поверхности.", "Производитель": "Россия"}
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 40multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 40max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.1844 | 500 | 3.1542 |
0.3689 | 1000 | 2.8525 |
0.5533 | 1500 | 2.7196 |
0.7377 | 2000 | 2.623 |
0.9222 | 2500 | 2.6181 |
1.1066 | 3000 | 2.5299 |
1.2910 | 3500 | 2.4974 |
1.4755 | 4000 | 2.4634 |
1.6599 | 4500 | 2.4221 |
1.8443 | 5000 | 2.4188 |
2.0288 | 5500 | 2.3779 |
2.2132 | 6000 | 2.3458 |
2.3976 | 6500 | 2.2998 |
2.5821 | 7000 | 2.3419 |
2.7665 | 7500 | 2.314 |
2.9509 | 8000 | 2.3115 |
3.1354 | 8500 | 2.2327 |
3.3198 | 9000 | 2.2278 |
3.5042 | 9500 | 2.2319 |
3.6887 | 10000 | 2.2344 |
3.8731 | 10500 | 2.2274 |
4.0575 | 11000 | 2.1902 |
4.2420 | 11500 | 2.1161 |
4.4264 | 12000 | 2.1232 |
4.6108 | 12500 | 2.1025 |
4.7953 | 13000 | 2.1322 |
4.9797 | 13500 | 2.1355 |
5.1641 | 14000 | 2.0072 |
5.3486 | 14500 | 1.9984 |
5.5330 | 15000 | 2.0017 |
5.7174 | 15500 | 2.0018 |
5.9019 | 16000 | 2.023 |
6.0863 | 16500 | 1.948 |
6.2707 | 17000 | 1.8868 |
6.4552 | 17500 | 1.8973 |
6.6396 | 18000 | 1.8953 |
6.8241 | 18500 | 1.9176 |
7.0085 | 19000 | 1.8969 |
7.1929 | 19500 | 1.7614 |
7.3774 | 20000 | 1.8054 |
7.5618 | 20500 | 1.7984 |
7.7462 | 21000 | 1.8033 |
7.9307 | 21500 | 1.7945 |
8.1151 | 22000 | 1.7153 |
8.2995 | 22500 | 1.6833 |
8.4840 | 23000 | 1.7055 |
8.6684 | 23500 | 1.7067 |
8.8528 | 24000 | 1.7123 |
9.0373 | 24500 | 1.6876 |
9.2217 | 25000 | 1.5714 |
9.4061 | 25500 | 1.5801 |
9.5906 | 26000 | 1.6204 |
9.7750 | 26500 | 1.6273 |
9.9594 | 27000 | 1.6214 |
10.1439 | 27500 | 1.5054 |
10.3283 | 28000 | 1.5077 |
10.5127 | 28500 | 1.5251 |
10.6972 | 29000 | 1.5242 |
10.8816 | 29500 | 1.55 |
11.0660 | 30000 | 1.4983 |
11.2505 | 30500 | 1.4049 |
11.4349 | 31000 | 1.42 |
11.6193 | 31500 | 1.4335 |
11.8038 | 32000 | 1.4651 |
11.9882 | 32500 | 1.4767 |
12.1726 | 33000 | 1.3289 |
12.3571 | 33500 | 1.3423 |
12.5415 | 34000 | 1.3575 |
12.7259 | 34500 | 1.3881 |
12.9104 | 35000 | 1.3993 |
13.0948 | 35500 | 1.3113 |
13.2792 | 36000 | 1.2785 |
13.4637 | 36500 | 1.2948 |
13.6481 | 37000 | 1.3153 |
13.8325 | 37500 | 1.3315 |
14.0170 | 38000 | 1.3091 |
14.2014 | 38500 | 1.1891 |
14.3858 | 39000 | 1.2345 |
14.5703 | 39500 | 1.2325 |
14.7547 | 40000 | 1.2673 |
14.9391 | 40500 | 1.2739 |
15.1236 | 41000 | 1.1863 |
15.3080 | 41500 | 1.1756 |
15.4924 | 42000 | 1.1876 |
15.6769 | 42500 | 1.1958 |
15.8613 | 43000 | 1.1924 |
16.0457 | 43500 | 1.1628 |
16.2302 | 44000 | 1.1002 |
16.4146 | 44500 | 1.1179 |
16.5990 | 45000 | 1.1354 |
16.7835 | 45500 | 1.1722 |
16.9679 | 46000 | 1.1719 |
17.1523 | 46500 | 1.0824 |
17.3368 | 47000 | 1.0641 |
17.5212 | 47500 | 1.089 |
17.7056 | 48000 | 1.1128 |
17.8901 | 48500 | 1.0993 |
18.0745 | 49000 | 1.0653 |
18.2589 | 49500 | 1.0198 |
18.4434 | 50000 | 1.0576 |
18.6278 | 50500 | 1.072 |
18.8122 | 51000 | 1.0679 |
18.9967 | 51500 | 1.0758 |
19.1811 | 52000 | 0.9829 |
19.3655 | 52500 | 0.9923 |
19.5500 | 53000 | 1.0242 |
19.7344 | 53500 | 1.0281 |
19.9188 | 54000 | 1.0313 |
20.1033 | 54500 | 0.9858 |
20.2877 | 55000 | 0.97 |
20.4722 | 55500 | 0.9693 |
20.6566 | 56000 | 0.9955 |
20.8410 | 56500 | 0.9999 |
21.0255 | 57000 | 0.9898 |
21.2099 | 57500 | 0.9394 |
21.3943 | 58000 | 0.9383 |
21.5788 | 58500 | 0.9549 |
21.7632 | 59000 | 0.9501 |
21.9476 | 59500 | 0.9594 |
22.1321 | 60000 | 0.902 |
22.3165 | 60500 | 0.9162 |
22.5009 | 61000 | 0.9234 |
22.6854 | 61500 | 0.9385 |
22.8698 | 62000 | 0.9353 |
23.0542 | 62500 | 0.9291 |
23.2387 | 63000 | 0.8861 |
23.4231 | 63500 | 0.8928 |
23.6075 | 64000 | 0.9109 |
23.7920 | 64500 | 0.9189 |
23.9764 | 65000 | 0.8977 |
24.1608 | 65500 | 0.8676 |
24.3453 | 66000 | 0.8629 |
24.5297 | 66500 | 0.8845 |
24.7141 | 67000 | 0.8841 |
24.8986 | 67500 | 0.8827 |
25.0830 | 68000 | 0.8837 |
25.2674 | 68500 | 0.848 |
25.4519 | 69000 | 0.8475 |
25.6363 | 69500 | 0.8597 |
25.8207 | 70000 | 0.8751 |
26.0052 | 70500 | 0.8536 |
26.1896 | 71000 | 0.8133 |
26.3740 | 71500 | 0.8165 |
26.5585 | 72000 | 0.8371 |
26.7429 | 72500 | 0.8712 |
26.9273 | 73000 | 0.8397 |
27.1118 | 73500 | 0.8258 |
27.2962 | 74000 | 0.7895 |
27.4806 | 74500 | 0.8153 |
27.6651 | 75000 | 0.8106 |
27.8495 | 75500 | 0.8235 |
28.0339 | 76000 | 0.8348 |
28.2184 | 76500 | 0.7915 |
28.4028 | 77000 | 0.797 |
28.5872 | 77500 | 0.7934 |
28.7717 | 78000 | 0.7992 |
28.9561 | 78500 | 0.8105 |
29.1405 | 79000 | 0.7642 |
29.3250 | 79500 | 0.7824 |
29.5094 | 80000 | 0.783 |
29.6938 | 80500 | 0.7938 |
29.8783 | 81000 | 0.804 |
30.0627 | 81500 | 0.7783 |
30.2471 | 82000 | 0.7529 |
30.4316 | 82500 | 0.7587 |
30.6160 | 83000 | 0.775 |
30.8004 | 83500 | 0.7784 |
30.9849 | 84000 | 0.7864 |
31.1693 | 84500 | 0.7371 |
31.3537 | 85000 | 0.7563 |
31.5382 | 85500 | 0.7408 |
31.7226 | 86000 | 0.773 |
31.9070 | 86500 | 0.7777 |
32.0915 | 87000 | 0.7466 |
32.2759 | 87500 | 0.7413 |
32.4603 | 88000 | 0.7524 |
32.6448 | 88500 | 0.733 |
32.8292 | 89000 | 0.7512 |
33.0136 | 89500 | 0.7538 |
33.1981 | 90000 | 0.7174 |
33.3825 | 90500 | 0.7342 |
33.5669 | 91000 | 0.7357 |
33.7514 | 91500 | 0.7309 |
33.9358 | 92000 | 0.7359 |
34.1203 | 92500 | 0.7276 |
34.3047 | 93000 | 0.7165 |
34.4891 | 93500 | 0.7081 |
34.6736 | 94000 | 0.73 |
34.8580 | 94500 | 0.7364 |
35.0424 | 95000 | 0.7275 |
35.2269 | 95500 | 0.7132 |
35.4113 | 96000 | 0.694 |
35.5957 | 96500 | 0.7029 |
35.7802 | 97000 | 0.709 |
35.9646 | 97500 | 0.732 |
36.1490 | 98000 | 0.7107 |
36.3335 | 98500 | 0.7068 |
36.5179 | 99000 | 0.6942 |
36.7023 | 99500 | 0.7128 |
36.8868 | 100000 | 0.7043 |
37.0712 | 100500 | 0.6988 |
37.2556 | 101000 | 0.6948 |
37.4401 | 101500 | 0.7133 |
37.6245 | 102000 | 0.6913 |
37.8089 | 102500 | 0.6991 |
37.9934 | 103000 | 0.6983 |
38.1778 | 103500 | 0.6929 |
38.3622 | 104000 | 0.6825 |
38.5467 | 104500 | 0.6789 |
38.7311 | 105000 | 0.6948 |
38.9155 | 105500 | 0.6807 |
39.1000 | 106000 | 0.6978 |
39.2844 | 106500 | 0.6832 |
39.4688 | 107000 | 0.673 |
39.6533 | 107500 | 0.6867 |
39.8377 | 108000 | 0.6946 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.1
- Transformers: 4.50.1
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Solomennikova/labse_funetuned_hoff_40_epochs
Base model
cointegrated/LaBSE-en-ru