YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

VibeVoice 7B - 4-bit Quantized

Optimized for RTX 3060/4060 and similar 12GB VRAM GPUs.

Specifications

  • Quantization: 4-bit (nf4)
  • Model size: 6.2 GB
  • VRAM usage: ~8 GB
  • Quality: Very good (minimal degradation)

Usage

from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor

model = VibeVoiceForConditionalGenerationInference.from_pretrained(
    "Dannidee/VibeVoice7b-low-vram/4bit",
    device_map='cuda',
    torch_dtype=torch.bfloat16,
)
processor = VibeVoiceProcessor.from_pretrained("Dannidee/VibeVoice7b-low-vram/4bit")

# Generate speech
text = "Speaker 1: Hello! Speaker 2: Hi there!"
inputs = processor(
    text=[text],
    voice_samples=[["voice1.wav", "voice2.wav"]],
    padding=True,
    return_tensors="pt",
)

outputs = model.generate(**inputs)
processor.save_audio(outputs.speech_outputs[0], "output.wav")
Downloads last month
494
Safetensors
Model size
5.41B params
Tensor type
F32
BF16
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support