YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
VibeVoice 7B - 4-bit Quantized
Optimized for RTX 3060/4060 and similar 12GB VRAM GPUs.
Specifications
- Quantization: 4-bit (nf4)
- Model size: 6.2 GB
- VRAM usage: ~8 GB
- Quality: Very good (minimal degradation)
Usage
from vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
"Dannidee/VibeVoice7b-low-vram/4bit",
device_map='cuda',
torch_dtype=torch.bfloat16,
)
processor = VibeVoiceProcessor.from_pretrained("Dannidee/VibeVoice7b-low-vram/4bit")
# Generate speech
text = "Speaker 1: Hello! Speaker 2: Hi there!"
inputs = processor(
text=[text],
voice_samples=[["voice1.wav", "voice2.wav"]],
padding=True,
return_tensors="pt",
)
outputs = model.generate(**inputs)
processor.save_audio(outputs.speech_outputs[0], "output.wav")
- Downloads last month
- 494
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
馃檵
Ask for provider support