metadata
license: apache-2.0
tags:
- pytorch
- unet
- chest-ct
- survival-analysis
- time-to-event
- model-3d
model-index:
- name: UNet-TTE
results: []
SwinUNETR Checkpoint
This is a PyTorch Lightning .ckpt
checkpoint for a SwinUNETR model trained on chest CT images with TTE objective.
Usage
A quickstart script is below.
import torch
from src.networks import SwinUNETRForClassification
swin_unetr_params = {
"img_size": (224, 224, 224),
"in_channels": 1,
"out_channels": 2,
"feature_size": 48,
"drop_rate": 0.0,
"attn_drop_rate": 0.0,
"dropout_path_rate": 0.0,
"use_checkpoint": True,
}
model = SwinUNETRForClassification(
swin_unetr_params=swin_unetr_params, num_classes=2
).to(device)
state_dict = torch.load(
loadmodel_path, map_location=f"cuda:{torch.cuda.current_device()}"
)
model.load_state_dict(state_dict)
For detailed instructions please follow the README in Github repo.