StepLaw-N_1.0B-D_19.0B
Collection
Models with 1.0B parameters trained with 19.0B tokens.
•
118 items
•
Updated
This model is part of the StepLaw-N_1.0B-D_19.0B collection.
StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.453e-04 and batch size 352 for 27743 iterations, using a total of 20.0B training tokens.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "StepLaw/StepLaw-N_1.0B-D_19.0B-LR3.453e-04-BS720896"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```## Part of StepLaw Project
StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
Visit [StepLaw Project](https://step-law.github.io/) for more information.