Wandb Model Name: step2v2_0618_h2048_ffnh8192_numh16_numl16_lr3.453e-04_bs352_ti27743_mlr1e-5

This model is part of the StepLaw-N_1.0B-D_19.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 2048
  • Feed-forward network size (FFN): 8192
  • Attention heads: 16
  • Layers: 16
  • Parameter count: 1.1BM

Training Parameters

  • Learning rate (lr): 3.453e-04
  • Batch size (bs): 352
  • Training iterations: 27743
  • Training tokens (D): 20.0B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 3.453e-04 and batch size 352 for 27743 iterations, using a total of 20.0B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_1.0B-D_19.0B-LR3.453e-04-BS720896"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```## Part of StepLaw Project

StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
Visit [StepLaw Project](https://step-law.github.io/) for more information.
Downloads last month
0
Safetensors
Model size
1.34B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Collection including StepLaw/StepLaw-N_1.0B-D_19.0B-LR3.453e-04-BS720896