zhengwenzhen's picture
Upload README.md with huggingface_hub
233e257 verified
|
raw
history blame
1.85 kB
metadata
license: apache-2.0
tags:
  - StepLaw
  - causal-lm
language:
  - en
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: >-
      step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.562e-02_bs64_ti30517_mlr1.00e-05
    results: []

Wandb Model Name: step2v2_0618_h960_ffnh9368_numh15_numl7_lr1.562e-02_bs64_ti30517_mlr1.00e-05

This model is part of the StepLaw-N_214M-D_3.0B collection.

Model Specifications

Architecture

  • Hidden size (H): 960
  • Feed-forward network size (FFN): 9368
  • Attention heads: 15
  • Layers: 7
  • Parameter count: 214MM

Training Parameters

  • Learning rate (lr): 1.562e-02
  • Batch size (bs): 64
  • Training iterations: 30517
  • Training tokens (D): 4.0B

Model Description

StepLaw models are trained with various hyperparameter settings to enable research on scaling laws and hyperparameter optimization. This specific model was trained with learning rate 1.562e-02 and batch size 64 for 30517 iterations, using a total of 4.0B training tokens.

Usage Example

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "StepLaw/StepLaw-N_214M-D_3.0B-LR1.562e-02-BS131072"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)

# Generate text
inputs = tokenizer("A long time ago in a galaxy far, far away", return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```## Part of StepLaw Project

StepLaw is an initiative to provide thousands of models for optimal hyperparameter research.
Visit [StepLaw Project](https://step-law.github.io/) for more information.