Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0392
  • Accuracy: {'accuracy': 0.878}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.3770 {'accuracy': 0.878}
0.4389 2.0 500 0.5278 {'accuracy': 0.862}
0.4389 3.0 750 0.5955 {'accuracy': 0.877}
0.2051 4.0 1000 0.7697 {'accuracy': 0.868}
0.2051 5.0 1250 0.9253 {'accuracy': 0.874}
0.0755 6.0 1500 0.9588 {'accuracy': 0.878}
0.0755 7.0 1750 1.0716 {'accuracy': 0.869}
0.036 8.0 2000 1.0602 {'accuracy': 0.87}
0.036 9.0 2250 1.0603 {'accuracy': 0.875}
0.0108 10.0 2500 1.0392 {'accuracy': 0.878}

Framework versions

  • PEFT 0.12.0
  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Sugisivam/distilbert-base-uncased-lora-text-classification

Adapter
(193)
this model