YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

M-voting_setup3_1epch_1e6_all_tasks_only_sft-sft

This model was created as part of the voting_setup3_1epch_1e6_all_tasks_only_sft experiment using the SkillFactory experiment management system.

Model Details

  • Training Method: LLaMAFactory SFT (Supervised Fine-Tuning)
  • Stage Name: sft
  • Experiment: voting_setup3_1epch_1e6_all_tasks_only_sft

Training Configuration

{"model_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct", "trust_remote_code": true, "stage": "sft", "do_train": true, "finetuning_type": "full", "deepspeed": "/datastor1/mwadhwa/code/skill-factory/thirdparty/LLaMA-Factory/examples/deepspeed/ds_z2_config.json", "dataset": "TAUR_dev__D_SFT_C_voting_setup3_1epch_1e6_all_tasks_only_sft_sft_data__sft_train", "template": "qwen", "cutoff_len": 16384, "max_samples": 1000000, "overwrite_cache": true, "preprocessing_num_workers": 1, "dataloader_num_workers": 0, "disable_tqdm": false, "output_dir": "/datastor1/mwadhwa/skill_inject_outputs/sf_experiments/skills_in_rl/voting_setup3_1epch_1e6_all_tasks_only_sft/llamafactory/checkpoints", "logging_steps": 10, "save_steps": 100000, "plot_loss": true, "overwrite_output_dir": true, "per_device_train_batch_size": 1, "gradient_accumulation_steps": 1, "learning_rate": 1e-06, "num_train_epochs": 1, "lr_scheduler_type": "cosine", "warmup_ratio": 0.05, "weight_decay": 0.0001, "adam_beta1": 0.9, "adam_beta2": 0.95, "bf16": true, "ddp_timeout": 180000000, "gradient_checkpointing": true, "save_only_model": true, "enable_masked_ranges": false, "save_strategy": "steps", "save_total_limit": 5, "sf_tracker_dataset_id": "TAUR-dev/D-ExpTracker__voting_setup3_1epch_1e6_all_tasks_only_sft__v1", "sf_eval_before_training": false, "sf_wandb_project": "voting_setup3_1epch_1e6_all_tasks_only_sft_sft", "sf_eval_steps": null, "run_name": "voting_setup3_1epch_1e6_all_tasks_only_sft_sft"}

Experiment Tracking

๐Ÿ”— View complete experiment details: Experiment Tracker Dataset

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("TAUR-dev/M-voting_setup3_1epch_1e6_all_tasks_only_sft-sft")
model = AutoModelForCausalLM.from_pretrained("TAUR-dev/M-voting_setup3_1epch_1e6_all_tasks_only_sft-sft")
Downloads last month
20
Safetensors
Model size
1.54B params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support