Ola-7b / README.md
THUdyh's picture
Update README.md
b70a751 verified
|
raw
history blame
17 kB
metadata
license: apache-2.0
base_model:
  - Qwen/Qwen2.5-7B-Instruct
pipeline_tag: any-to-any
language:
  - en
  - zh

Ola-7B

Model Summary

The Ola-7B model is developed by people from Tencent, Tsinghua University and Nanyang Technological University. Based on Qwen2.5 language model, it is trained on text, image, video and audio data with a context window of 32K tokens. It can take both image/video, text and audio as input and output text.

Ola offers an on-demand solution to seamlessly and efficiently process visual inputs with arbitrary spatial sizes and temporal lengths.

Use

  1. Download the speech encoder at https://huggingface.co/THUdyh/Ola_speech_encoders.
  2. Replace the path in config.json with local path of speech encoders.

We provide a simple generation process for using our model. For more details, please refer to our Github Repo

import os
os.environ['LOWRES_RESIZE'] = '384x32'
os.environ['HIGHRES_BASE'] = '0x32'
os.environ['VIDEO_RESIZE'] = "0x64"
os.environ['VIDEO_MAXRES'] = "480"
os.environ['VIDEO_MINRES'] = "288"
os.environ['MAXRES'] = '1536'
os.environ['MINRES'] = '0'
os.environ['REGIONAL_POOL'] = '2x'
os.environ['FORCE_NO_DOWNSAMPLE'] = '1'
os.environ['LOAD_VISION_EARLY'] = '1'
os.environ['SKIP_LOAD_VIT'] = '1'
    

import gradio as gr
import torch
import re
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import transformers
import moviepy.editor as mp
from typing import Dict, Optional, Sequence, List
import librosa
import whisper
from ola.conversation import conv_templates, SeparatorStyle
from ola.model.builder import load_pretrained_model
from ola.utils import disable_torch_init
from ola.datasets.preprocess import tokenizer_image_token, tokenizer_speech_image_token, tokenizer_speech_question_image_token
from ola.mm_utils import get_model_name_from_path, KeywordsStoppingCriteria, process_anyres_video, process_anyres_highres_image_genli
from ola.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX, DEFAULT_SPEECH_TOKEN

model_path = ""
tokenizer, model, image_processor, _ = load_pretrained_model(model_path, None)
model = model.to('cuda').eval()
model = model.bfloat16()

USE_SPEECH=False
cur_dir = os.path.dirname(os.path.abspath(__file__))


def load_audio(audio_file_name):
    speech_wav, samplerate = librosa.load(audio_file_name, sr=16000)
    if len(speech_wav.shape) > 1:
        speech_wav = speech_wav[:, 0]
    speech_wav = speech_wav.astype(np.float32)
    CHUNK_LIM = 480000
    SAMPLE_RATE = 16000
    speechs = []
    speech_wavs = []

    if len(speech_wav) <= CHUNK_LIM:
        speech = whisper.pad_or_trim(speech_wav)
        speech_wav = whisper.pad_or_trim(speech_wav)
        speechs.append(speech)
        speech_wavs.append(torch.from_numpy(speech_wav).unsqueeze(0))
    else:
        for i in range(0, len(speech_wav), CHUNK_LIM):
            chunk = speech_wav[i : i + CHUNK_LIM]
            if len(chunk) < CHUNK_LIM:
                chunk = whisper.pad_or_trim(chunk)
            speechs.append(chunk)
            speech_wavs.append(torch.from_numpy(chunk).unsqueeze(0))
    mels = []
    for chunk in speechs:
        chunk = whisper.log_mel_spectrogram(chunk, n_mels=128).permute(1, 0).unsqueeze(0)
        mels.append(chunk)

    mels = torch.cat(mels, dim=0)
    speech_wavs = torch.cat(speech_wavs, dim=0)
    if mels.shape[0] > 25:
        mels = mels[:25]
        speech_wavs = speech_wavs[:25]

    speech_length = torch.LongTensor([mels.shape[1]] * mels.shape[0])
    speech_chunks = torch.LongTensor([mels.shape[0]])
    return mels, speech_length, speech_chunks, speech_wavs

def extract_audio(videos_file_path):
    my_clip = mp.VideoFileClip(videos_file_path)
    return my_clip.audio

def ola_inference(multimodal, audio_path):
    visual, text = multimodal["files"][0], multimodal["text"]
    if visual.endswith("image2.png"):
        modality = "video"
        visual = f"{cur_dir}/case/case1.mp4"
    if visual.endswith(".mp4"):
        modality = "video"
    else:
        modality = "image"
    
    # input audio and video, do not parse audio in the video, else parse audio in the video
    if audio_path:
        USE_SPEECH = True
    elif modality == "video":
        USE_SPEECH = True
    else:
        USE_SPEECH = False
    
    speechs = []
    speech_lengths = []
    speech_wavs = []
    speech_chunks = []
    if modality == "video":
        vr = VideoReader(visual, ctx=cpu(0))
        total_frame_num = len(vr)
        fps = round(vr.get_avg_fps())
        uniform_sampled_frames = np.linspace(0, total_frame_num - 1, 64, dtype=int)
        frame_idx = uniform_sampled_frames.tolist()
        spare_frames = vr.get_batch(frame_idx).asnumpy()
        video = [Image.fromarray(frame) for frame in spare_frames]
    else:
        image = [Image.open(visual)]
        image_sizes = [image[0].size]

    if USE_SPEECH and audio_path:
        audio_path = audio_path
        speech, speech_length, speech_chunk, speech_wav = load_audio(audio_path)
        speechs.append(speech.bfloat16().to('cuda'))
        speech_lengths.append(speech_length.to('cuda'))
        speech_chunks.append(speech_chunk.to('cuda'))
        speech_wavs.append(speech_wav.to('cuda'))
        print('load audio')
    elif USE_SPEECH and not audio_path:
        # parse audio in the video
        audio = extract_audio(visual)
        audio.write_audiofile("./video_audio.wav")
        video_audio_path = './video_audio.wav'
        speech, speech_length, speech_chunk, speech_wav = load_audio(video_audio_path)
        speechs.append(speech.bfloat16().to('cuda'))
        speech_lengths.append(speech_length.to('cuda'))
        speech_chunks.append(speech_chunk.to('cuda'))
        speech_wavs.append(speech_wav.to('cuda'))
    else:
        speechs = [torch.zeros(1, 3000, 128).bfloat16().to('cuda')]
        speech_lengths = [torch.LongTensor([3000]).to('cuda')]
        speech_wavs = [torch.zeros([1, 480000]).to('cuda')]
        speech_chunks = [torch.LongTensor([1]).to('cuda')]
    
    conv_mode = "qwen_1_5"
    if text:
        qs = text
    else:
        qs = ''
    if USE_SPEECH and audio_path:
        qs = DEFAULT_IMAGE_TOKEN + "\n" + "User's question in speech: " + DEFAULT_SPEECH_TOKEN + '\n'
    elif USE_SPEECH:
        qs = DEFAULT_SPEECH_TOKEN + DEFAULT_IMAGE_TOKEN + "\n" + qs
    else:
        qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    conv = conv_templates[conv_mode].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()
    if USE_SPEECH and audio_path:
        input_ids = tokenizer_speech_question_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
    elif USE_SPEECH:
        input_ids = tokenizer_speech_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')
    else:
        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to('cuda')

    if modality == "video":
        video_processed = []
        for idx, frame in enumerate(video):
            image_processor.do_resize = False
            image_processor.do_center_crop = False
            frame = process_anyres_video(frame, image_processor)

            if frame_idx is not None and idx in frame_idx:
                video_processed.append(frame.unsqueeze(0))
            elif frame_idx is None:
                video_processed.append(frame.unsqueeze(0))
        
        if frame_idx is None:
            frame_idx = np.arange(0, len(video_processed), dtype=int).tolist()
        
        video_processed = torch.cat(video_processed, dim=0).bfloat16().to("cuda")
        video_processed = (video_processed, video_processed)

        video_data = (video_processed, (384, 384), "video")
    else:
        image_processor.do_resize = False
        image_processor.do_center_crop = False
        image_tensor, image_highres_tensor = [], []
        for visual in image:
            image_tensor_, image_highres_tensor_ = process_anyres_highres_image_genli(visual, image_processor)
            image_tensor.append(image_tensor_)
            image_highres_tensor.append(image_highres_tensor_)
        if all(x.shape == image_tensor[0].shape for x in image_tensor):
            image_tensor = torch.stack(image_tensor, dim=0)
        if all(x.shape == image_highres_tensor[0].shape for x in image_highres_tensor):
            image_highres_tensor = torch.stack(image_highres_tensor, dim=0)
        if type(image_tensor) is list:
            image_tensor = [_image.bfloat16().to("cuda") for _image in image_tensor]
        else:
            image_tensor = image_tensor.bfloat16().to("cuda")
        if type(image_highres_tensor) is list:
            image_highres_tensor = [_image.bfloat16().to("cuda") for _image in image_highres_tensor]
        else:
            image_highres_tensor = image_highres_tensor.bfloat16().to("cuda")

    pad_token_ids = 151643

    attention_masks = input_ids.ne(pad_token_ids).long().to('cuda')
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

    gen_kwargs = {}

    if "max_new_tokens" not in gen_kwargs:
        gen_kwargs["max_new_tokens"] = 1024
    if "temperature" not in gen_kwargs:
        gen_kwargs["temperature"] = 0.2
    if "top_p" not in gen_kwargs:
        gen_kwargs["top_p"] = None
    if "num_beams" not in gen_kwargs:
        gen_kwargs["num_beams"] = 1

    with torch.inference_mode():
        if modality == "video":
            output_ids = model.generate(
                inputs=input_ids,
                images=video_data[0][0],
                images_highres=video_data[0][1],
                modalities=video_data[2],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )
        else:
            output_ids = model.generate(
                inputs=input_ids,
                images=image_tensor,
                images_highres=image_highres_tensor,
                image_sizes=image_sizes,
                modalities=['image'],
                speech=speechs,
                speech_lengths=speech_lengths,
                speech_chunks=speech_chunks,
                speech_wav=speech_wavs,
                attention_mask=attention_masks,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                do_sample=True if gen_kwargs["temperature"] > 0 else False,
                temperature=gen_kwargs["temperature"],
                top_p=gen_kwargs["top_p"],
                num_beams=gen_kwargs["num_beams"],
                max_new_tokens=gen_kwargs["max_new_tokens"],
            )

    outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
    outputs = outputs.strip()
    if outputs.endswith(stop_str):
        outputs = outputs[:-len(stop_str)]
    outputs = outputs.strip()
    return outputs, None

Model Architecture

  • Architecture: Pre-trained Oryx-ViT + Qwen2.5-7B

  • Data: a mixture of more than 5M image/video/audio data, training for 3 stage.

  • Precision: BFloat16

Hardware & Software

  • Hardware: 64 * NVIDIA Tesla A100

  • Orchestration: HuggingFace Trainer

  • Code: Pytorch

Citation

@article{liu2025ola, title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment}, author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming}, journal={arXiv preprint arXiv:2502.04328}, year={2025} }

File information

The repository contains the following file information:

Filename: generation_config.json Content: { "attn_implementation": "flash_attention_2", "bos_token_id": 151643, "do_sample": true, "eos_token_id": [ 151645, 151643 ], "pad_token_id": 151643, "repetition_penalty": 1.05, "temperature": 0.7, "top_k": 20, "top_p": 0.8, "transformers_version": "4.43.4" }

Filename: merges.txt Content: "Content of the file is larger than 50 KB, too long to display."

Filename: special_tokens_map.json Content: { "additional_special_tokens": [ "<|im_start|>", "<|im_end|>", "<|object_ref_start|>", "<|object_ref_end|>", "<|box_start|>", "<|box_end|>", "<|quad_start|>", "<|quad_end|>", "<|vision_start|>", "<|vision_end|>", "<|vision_pad|>", "<|image_pad|>", "<|video_pad|>" ], "eos_token": { "content": "<|im_end|>", "lstrip": false, "normalized": false, "rstrip": false, "single_word": false }, "pad_token": "<|mm_pad|>" }

Filename: model.safetensors.index.json Content: "Content of the file is larger than 50 KB, too long to display."

Filename: config.json Content: "Content of the file is larger than 50 KB, too long to display."

Filename: vocab.json Content: "Content of the file is larger than 50 KB, too long to display."

Filename: tokenizer_config.json Content: "Content of the file is larger than 50 KB, too long to display."

Project page

The project page URL we found has the following URL:

Github README

The Github README we found contains the following content:

OLA: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment

Join our WeChat [Project Page] [Demo]

πŸš€ News

  • [2025/02/07] πŸŽ‰πŸŽ‰πŸŽ‰ Initial codebase for eval and training will be released ASAP! Thanks for your attention.

⚑ Model Zoo

  1. Speech-Visual Data
    • image+text with local audio caption.
    • videos from webvid2.5m with audio caption.
  2. Visual Tokenizer
    • Imagebind small.
    • Oryx-ViT 18B-1152.
  3. Training Pipeline
    • image+text stage.
    • audio+image+text stage.
    • video+audio+image+text stage

TODO

  • Multi Stage Training

βš™οΈ Installation

See INSTALL.md for detailed instructions.

πŸ›΄ Quick Inference Code

πŸ“ƒ Citation

@article{liu2025ola,
title={Ola: Pushing the Frontiers of Omni-Modal Language Model with Progressive Modality Alignment},
author={Liu, Zuyan and Dong, Yuhao and Wang, Jiahui and Liu, Ziwei and Hu, Winston and Lu, Jiwen and Rao, Yongming},
journal={arXiv preprint arXiv:2502.04328},
year={2025}
}

Acknowledgement

  • This project has been built using the great codebase of Qwen, Video-LLaVA, OpenFlamingo. We thank the authors for their wonderful works.

Contact

  • If you have any questions, feel free to open issues or pull requests.

Format your response as markdown, like this:

reasoning

A reasoning section regarding which metadata is most appropriate for the given model to put in the content section as YAML, given the available context about the paper (abstract, Github README content and project page content if provided). Formatted as plain text.

Title

The title of your Hugging Face pull request formatted as plain text

Comment

The comment of your Hugging Face pull request formatted as markdown

Metadata

The metadata of the new/updated model card formatted as YAML.

Content

The content of the new/updated README.md (model card) formatted as markdown

Start your answer directly with a "## Reasoning" section followed by "## Title", "## Comment", "## Metadata" and "## Content" sections that are filled in with relevant info for the given paper. Only format the Metadata section using yaml and markers. In case there is already an Arxiv link present, there is no need to replace it with a Hugging Face paper page link. In case there is already a Github or project page URL present, there is no need to mention in the comment that you added it.