📃Paper | 🌐Website | 💻Code | 🛢️Dataset (VideoFeedback2) | 🤗Model (VideoScore2) | 🤗Space (VideoScore2)
🤔Ablation1: SFT-only | 🤔Ablation2: SFT-w/o-CoT | 🤔Ablation3: RL-w/o-SFT
Introduction
We present VideoScore2, a multi-dimensional, interpretable, and human-aligned framework that explicitly evaluates visual quality, text-to-video alignment, and physical/common-sense consistency while producing detailed chain-of-thought rationales.
Our model is trained on a large-scale dataset VideoFeedback2 containing 27,168 human-annotated videos with both scores and reasoning traces across three dimensions, using a two-stage pipeline of supervised fine-tuning followed by reinforcement learning with Group Relative Policy Optimization (GRPO) to enhance analytical robustness.
Extensive experiments demonstrate that VideoScore2 achieves superior performance with 44.35 (+5.94) accuracy on our in-domain benchmark VideoScore-Bench-v2 and 50.37 (+4.32) average performance across four out-of-domain benchmarks (VideoGenReward-Bench, VideoPhy2, etc).
Usage
Inference
For running inference of VideoScore2, firstly install:
pip install torch==2.6.0 torchvision==0.21.0 torchaudio==2.6.0
pip install transformers==4.53.2
pip install qwen-vl-utils
pip install accelerate
pip install scipy
pip install opencv-python-headless
pip install numpy==2.2.6
Run inference over one video:
from transformers import AutoProcessor, AutoModelForVision2Seq, AutoTokenizer
from qwen_vl_utils import process_vision_info
import torch
import numpy as np
import cv2
import os
import re
from string import Template
def _get_video_fps(url_or_p: str):
cap = cv2.VideoCapture(url_or_p)
if not cap.isOpened():
raise ValueError(f"Cannot open video: {url_or_p}")
fps = cap.get(cv2.CAP_PROP_FPS)
cap.release()
return fps
def ll_based_soft_score_normed(hard_val, token_idx, scores, tokenizer):
if hard_val is None or token_idx < 0:
return None
logits = scores[token_idx][0]
score_range = list(range(1, 6))
score_probs = []
for s in score_range:
ids = tokenizer.encode(str(s), add_special_tokens=False)
if len(ids) == 1:
tid = ids[0]
logp = torch.log_softmax(logits, dim=-1)[tid].item()
prob = float(np.exp(logp))
score_probs.append((s, prob))
if not score_probs:
print("[warn] No valid score token found.")
return None
scores_list, probs_list = zip(*score_probs)
total_prob = sum(probs_list)
max_prob = max(probs_list)
best_score = scores_list[probs_list.index(max_prob)]
normalized_prob = max_prob / total_prob if total_prob > 0 else 0
return round(best_score * normalized_prob, 4)
def find_score_token_index_by_prompt(prompt_text, tokenizer, gen_ids):
gen_str = tokenizer.decode(gen_ids, skip_special_tokens=False)
pattern = r"(?:\(\d+\)\s*|\n\s*)?" + re.escape(prompt_text)
match = re.search(pattern, gen_str, flags=re.IGNORECASE)
if not match:
return -1
after_text = gen_str[match.end():]
num_match = re.search(r"\d", after_text)
if not num_match:
return -1
target_substr = gen_str[:match.end() + num_match.start() + 1]
for i in range(len(gen_ids)):
partial = tokenizer.decode(gen_ids[:i+1], skip_special_tokens=False)
if partial == target_substr:
return i
return -1
def main(MODEL_NAME, video_path, t2v_prompt):
# --- prepare query ---
VS2_QUERY_TEMPLATE = Template("""
You are an expert for evaluating AI-generated videos from three dimensions:
(1) visual quality – clarity, smoothness, artifacts;
(2) text-to-video alignment – fidelity to the prompt;
(3) physical/common-sense consistency – naturalness and physics plausibility.
Video prompt: $t2v_prompt
Please output in this format:
visual quality: <v_score>;
text-to-video alignment: <t_score>,
physical/common-sense consistency: <p_score>
""")
user_prompt = VS2_QUERY_TEMPLATE.substitute(t2v_prompt=t2v_prompt)
if not os.path.exists(video_path):
raise ValueError(f"Video not found: {video_path}")
infer_fps, max_tokens, temperature = 2.0, 1024, 0.7
if infer_fps == "raw":
infer_fps = _get_video_fps(video_path)
print(f"[Init] Loading model: {MODEL_NAME}")
model = AutoModelForVision2Seq.from_pretrained(MODEL_NAME, trust_remote_code=True).to("cuda")
processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
tokenizer = getattr(processor, "tokenizer", None) or AutoTokenizer.from_pretrained(
MODEL_NAME, trust_remote_code=True, use_fast=False
)
# --- preprocess ---
messages = [{"role": "user", "content": [
{"type": "video", "video": video_path, "fps": infer_fps},
{"type": "text", "text": user_prompt}
]}]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text], images=image_inputs, videos=video_inputs,
fps=infer_fps, padding=True, return_tensors="pt"
).to("cuda")
# --- inference ---
gen_out = model.generate(
**inputs,
max_new_tokens=max_tokens,
output_scores=True,
return_dict_in_generate=True,
do_sample=True,
temperature=temperature,
)
sequences = gen_out.sequences
scores = gen_out.scores
input_len = inputs["input_ids"].shape[1]
gen_token_ids = sequences[0, input_len:].tolist()
output_text = processor.batch_decode(
sequences[:, input_len:], skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
print("\n[Raw Model Output]\n", output_text)
# --- parse scores ---
pattern = r"visual quality:\s*(\d+).*?text-to-video alignment:\s*(\d+).*?physical/common-sense consistency:\s*(\d+)"
match = re.search(pattern, output_text, re.DOTALL | re.IGNORECASE)
v_score = int(match.group(1)) if match else None
t_score = int(match.group(2)) if match else None
p_score = int(match.group(3)) if match else None
idx_v = find_score_token_index_by_prompt("visual quality:", tokenizer, gen_token_ids)
idx_t = find_score_token_index_by_prompt("text-to-video alignment:", tokenizer, gen_token_ids)
idx_p = find_score_token_index_by_prompt("physical/common-sense consistency:", tokenizer, gen_token_ids)
v_soft = ll_based_soft_score_normed(v_score, idx_v, scores, tokenizer)
t_soft = ll_based_soft_score_normed(t_score, idx_t, scores, tokenizer)
p_soft = ll_based_soft_score_normed(p_score, idx_p, scores, tokenizer)
print("\n====== Inference Result ======")
print(f"Video Path: {video_path}")
print(f"Visual Quality: {v_soft}")
print(f"Text-to-Video Alignment: {t_soft}")
print(f"Physical Consistency: {p_soft}")
print("==============================\n")
if __name__ == "__main__":
MODEL_NAME = "TIGER-Lab/VideoScore2"
video_path = "" # ← your video path here
t2v_prompt = "" # ← the text prompt for this video
main(MODEL_NAME, video_path, t2v_prompt)
Training (SFT and RL)
see VideoScore2/training for details
Evaluation
see VideoScore2/evaluation for details
Citation
@misc{he2025videoscore2thinkscoregenerative,
title={VideoScore2: Think before You Score in Generative Video Evaluation},
author={Xuan He and Dongfu Jiang and Ping Nie and Minghao Liu and Zhengxuan Jiang and Mingyi Su and Wentao Ma and Junru Lin and Chun Ye and Yi Lu and Keming Wu and Benjamin Schneider and Quy Duc Do and Zhuofeng Li and Yiming Jia and Yuxuan Zhang and Guo Cheng and Haozhe Wang and Wangchunshu Zhou and Qunshu Lin and Yuanxing Zhang and Ge Zhang and Wenhao Huang and Wenhu Chen},
year={2025},
eprint={2509.22799},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2509.22799},
}
- Downloads last month
- 274
