You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Built with Axolotl

See axolotl config

axolotl version: 0.8.0.dev0

base_model: /hf_downloads/models/Qwen/Qwen2.5-1.5B # container
# base_model: /usr/local/share/hf_downloads/meta-llama/Llama-3.2-1B-Instruct # local

# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: true

strict: false

seed: 28

datasets:
  # path to dataset
  - path: /workspace/axolotl/project/data/datasets/traclm-data-v4/traclm-v4-slimorca.jsonl
    type: chat_template
    chat_template: tokenizer_default
    split: train
    field_messages: conversations
    message_property_mappings:
      role: from
      content: value
    train_on_eos: "turn" # mask all EOS tokens except assistant (if dataset has only single-turn convos, this could also be set to "last")

special_tokens:
  pad_token: <|pad_token|>
  eos_token: <|im_end|>

    # now deprecated
    #message_field_role: from
    #message_field_content: value

dataset_prepared_path: /workspace/axolotl/project/axolotl_stuff/data_prepared/last_run_prepared # container
# dataset_prepared_path: /home/danielruiz/workspace/llm_lab/traclm/axolotl_stuff/data_prepared/last_run_prepared # local

val_set_size: 0.05

# list of datasets for eval (must comment out val_set_size) <-- NOT WORKING YET
# test_datasets:
#   - path: /workspace/data/eval.jsonl
#     ds_type: json
#     # You need to specify a split. For "json" datasets the default split is called "train".
#     split: train
#     type: completion
#     data_files:
#       - /workspace/data/eval.jsonl

output_dir: /workspace/axolotl/project/axolotl_stuff/output/last_run # container
# output_dir: /home/danielruiz/workspace/llm_lab/traclm/axolotl_stuff/output/last_run # local

sequence_len: 4096 # qwen2.5 instruct max context length = 32768
sample_packing: true
# sample_packing_eff_est:
# total_num_tokens: 
eval_sample_packing: true # false # must be set to false for causal LM eval
pad_to_sequence_len: true

# have to log in via cli first
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
wandb_project: traclm-v4-1.5b-instruct # wandb project name
wandb_entity: nps-trac-mtry # wandb team name if using a team
wandb_name: # name of your wandb run, can keep blank
wandb_run_id: # ID of your wandb run, can keep blank
wandb_log_model: # "checkpoint" to log model every `save_steps`, "end" to log only at the end of training, keep blank to prevent sending model to wandb

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

# use gradient checkpointing when you are having OOM issues (slows training by ~20%)
# gradient_checkpointing: true
# gradient_checkpointing_kwargs:
#   use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 4.6 # loss value indicating the learning has broken down (a good estimate is 2x the loss at the start of training)
loss_watchdog_patience: 2 # num of high-loss steps in a row before the trainer aborts (default: 3)

save_safetensors: true

gradient_accumulation_steps: 16
micro_batch_size: 4
eval_batch_size: 4
optimizer: adamw_torch_fused
# lr estimation equation: ~[(base model LR) * sqrt((.5 x seq_len x num_gpu x micro_batch_size) / base model tokens per batch)]
# (7*10^-7) * โˆš((.5*4096*8*64)/(2048*32768)) = ~8e-8
lr_scheduler: cosine # linear (for testing)
learning_rate: 8e-5
warmup_steps: 50
# warmup_ratio: .05
num_epochs: 3
eval_strategy: "steps" # "epoch" # "no" (use epoch for testing, steps for training)
eval_steps:
evals_per_epoch: 1
# do_causal_lm_eval: true # threw errors
# eval_causal_lm_metrics: ["perplexity"] # threw errors
# eval_table_size:
# save_steps:
saves_per_epoch: 1
save_strategy: "epoch"
# save_total_limit: 10
# max_steps: 20

debug:
deepspeed:
weight_decay: 0.1 # match qwen sft finetuning, 0.0 by default

fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  # activation_checkpointing: true # not sure if this works, but should be enabled when using fsdp in place of gradient_checkpointing above (only when gradient checkpointing required)
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
  fsdp_backward_prefetch: BACKWARD_PRE

workspace/axolotl/project/axolotl_stuff/output/last_run

This model was trained from scratch on the /workspace/axolotl/project/data/datasets/traclm-data-v4/traclm-v4-slimorca.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5318

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 28
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 512
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss
2.0689 0.0056 1 0.7979
1.5334 0.9948 179 0.5218
1.3614 1.9948 358 0.5179
1.2809 2.9948 537 0.5318

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
-
Safetensors
Model size
1.78B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Collection including TRAC-MTRY/traclm-v4-1.5b-instruct