🧠 Skin Condition Classifier (EfficientNetV2B0)

This model classifies facial skin images into 6 common dermatological conditions using a fine-tuned EfficientNetV2B0 architecture.

πŸ“Œ Supported Skin Conditions

  • Acne
  • Carcinoma
  • Eczema
  • Keratosis
  • Milia
  • Rosacea

πŸ§ͺ Model Performance

  • Final Test Accuracy: 95.60%
  • Evaluated on a balanced, augmented custom dataset of real-world dermatological images.
  • Confusion Matrix indicates strong separation for all classes, with minor overlap in visually similar conditions.

πŸ—οΈ Model Architecture

  • βœ… Backbone: EfficientNetV2B0 (pretrained on ImageNet)
  • πŸ” Global Average Pooling + Dense(512, ReLU) + Dropout(0.4) + Dense(6, Softmax)
  • πŸ“‰ Loss Function: sparse_categorical_crossentropy
  • βš–οΈ Class Weights: Applied to handle minor variations
  • 🧠 Fine-tuned with learning rate scheduling and layer unfreezing

🧠 Usage

πŸ” Load the model (Keras format)

from tensorflow.keras.models import load_model
model = load_model("path/to/saved_skin_model")

πŸ–ΌοΈ Input Format

  • Image size: 224x224
  • Input dtype: float32
  • Preprocessing: Use preprocess_input from tensorflow.keras.applications.efficientnet_v2
from tensorflow.keras.applications.efficientnet_v2 import preprocess_input
import numpy as np
img = preprocess_input(img)  # Ensure shape is (1, 224, 224, 3)
pred = model.predict(img)

πŸ“Š Output Format

  • Softmax probabilities for 6 classes.
  • argmax(pred) gives class index from 0–5.

🧾 License

MIT License


πŸ‘¨β€πŸ’» Author

Tanishq Shinde B.E. Computer Engineering, PICT πŸ”— GitHub | LinkedIn | Hugging Face


πŸ”¬ For educational and non-diagnostic purposes only. Always consult a medical professional.

---
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support