DeBERTa-v3-Large for Emotion Detection (Merged & Augmented Dataset)
This model is fine-tuned on microsoft/deberta-v3-large
on a merged and augmented version of the following datasets:
- π€ GoEmotions
- π ISEAR Dataset
- π Emotion Dataset (DAIR-AI)
The model is trained for 7-class emotion classification in English and achieves state-of-the-art performance using advanced augmentation and weighted loss.
π§ Emotion Classes
- π anger
- π€’ disgust
- π¨ fear
- π happy
- π neutral
- π’ sad
- π² surprise
π Training Metrics
Epoch | Training Loss | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Precision Weighted | Recall Macro | Recall Weighted |
---|---|---|---|---|---|---|---|---|---|
1 | 0.3867 | 0.3506 | 0.7559 | 0.6857 | 0.7629 | 0.6520 | 0.7859 | 0.7722 | 0.7559 |
2 | 0.2340 | 0.2120 | 0.8147 | 0.7879 | 0.8174 | 0.7557 | 0.8292 | 0.8365 | 0.8147 |
3 | 0.1786 | 0.1616 | 0.8428 | 0.8114 | 0.8445 | 0.7715 | 0.8533 | 0.8758 | 0.8428 |
4 | 0.1261 | 0.1371 | 0.8671 | 0.8584 | 0.8669 | 0.8479 | 0.8729 | 0.8754 | 0.8671 |
5 | 0.0770 | 0.1242 | 0.8940 | 0.8751 | 0.8936 | 0.8537 | 0.8965 | 0.9020 | 0.8940 |
6 | 0.0608 | 0.1190 | 0.9208 | 0.9179 | 0.9221 | 0.9171 | 0.9225 | 0.9195 | 0.9208 |
7 | 0.0462 | 0.1209 | 0.9255 | 0.9192 | 0.9253 | 0.9218 | 0.9269 | 0.9184 | 0.9255 |
8 | 0.0373 | 0.1251 | 0.9305 | 0.9198 | 0.9305 | 0.9145 | 0.9317 | 0.9262 | 0.9305 |
9 | 0.0270 | 0.1262 | 0.9453 | 0.9375 | 0.9453 | 0.9354 | 0.9462 | 0.9400 | 0.9453 |
10 | 0.0189 | 0.1304 | 0.9526 | 0.9412 | 0.9527 | 0.9408 | 0.9529 | 0.9421 | 0.9526 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
20 | 0.0025 | 0.1618 | 0.9569 | 0.9434 | 0.9569 | 0.9444 | 0.9571 | 0.9428 | 0.9569 |
π οΈ Training Configuration
training_args = TrainingArguments(
output_dir="./deberta-large-3-merged_augmented",
eval_strategy="epoch",
save_strategy="epoch",
learning_rate=1e-5,
per_device_train_batch_size=32,
per_device_eval_batch_size=32,
gradient_accumulation_steps=2,
num_train_epochs=20,
weight_decay=0.01,
lr_scheduler_type="cosine",
logging_dir="./logs",
logging_steps=50,
save_total_limit=1,
load_best_model_at_end=True,
metric_for_best_model="accuracy",
report_to="none",
dataloader_num_workers=8
)
π Confusion Matrix
π Classification Report
π§ How to Use
from transformers import DebertaV2Tokenizer, DebertaV2ForSequenceClassification
import torch
text = "I'm feeling very nervous about tomorrow."
tokenizer = DebertaV2Tokenizer.from_pretrained('Tanneru/Emotion-Classification-DeBERTa-v3-Large')
model = DebertaV2ForSequenceClassification.from_pretrained('Tanneru/Emotion-Classification-DeBERTa-v3-Large')
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
predicted_class_id = torch.argmax(outputs.logits).item()
print("Predicted emotion:", model.config.id2label[predicted_class_id])
π License
This model is released under the Apache 2.0 License. You are free to use, modify, and distribute the model with proper attribution.
βοΈ Author
- Username: Tanneru
- Base model:
microsoft/deberta-v3-large
π Citation
If you use this model in your work, please cite:
@misc{tanneru2025deberta_emotion,
title={DeBERTa-v3-Large fine-tuned on Merged & Augmented Emotion Datasets},
author={Tanneru},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/Tanneru/Emotion-Classification-DeBERTa-v3-Large}},
}
@article{he2021deberta,
title={DeBERTa: Decoding-enhanced BERT with Disentangled Attention},
author={He, Pengcheng and Liu, Xiaodong and Gao, Jianfeng and Chen, Weizhu},
journal={arXiv preprint arXiv:2006.03654},
year={2021}
}
- Downloads last month
- 48
Model tree for Tanneru/Emotion-Classification-DeBERTa-v3-Large
Base model
microsoft/deberta-v3-largeDataset used to train Tanneru/Emotion-Classification-DeBERTa-v3-Large
Evaluation results
- Accuracy on Merged Emotion Datasets (GoEmotions + ISEAR + Emotion)self-reported0.960
- F1 on Merged Emotion Datasets (GoEmotions + ISEAR + Emotion)self-reported0.940