BGE base Financial Matryoshka

This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-base-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("TatvaRA/bge-base-financial-matryoshka")
# Run inference
sentences = [
    'In which part and item of the Annual Report on Form 10-K can the consolidated financial statements be found?',
    'The consolidated financial statements and accompanying notes listed in Part IV, Item 15(a)(1) of this Annual Report on Form 10-K are included elsewhere in this Annual Report on For... 10-K.',
    'Our Consumer Wireline business unit offers AT&T Internet Air, which is a fixed wireless access product that provides home internet services delivered over our 5G wireless network where available.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.7114
cosine_accuracy@3 0.8371
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9057
cosine_precision@1 0.7114
cosine_precision@3 0.279
cosine_precision@5 0.174
cosine_precision@10 0.0906
cosine_recall@1 0.7114
cosine_recall@3 0.8371
cosine_recall@5 0.87
cosine_recall@10 0.9057
cosine_ndcg@10 0.8111
cosine_mrr@10 0.7805
cosine_map@100 0.7842

Information Retrieval

Metric Value
cosine_accuracy@1 0.7157
cosine_accuracy@3 0.83
cosine_accuracy@5 0.87
cosine_accuracy@10 0.9071
cosine_precision@1 0.7157
cosine_precision@3 0.2767
cosine_precision@5 0.174
cosine_precision@10 0.0907
cosine_recall@1 0.7157
cosine_recall@3 0.83
cosine_recall@5 0.87
cosine_recall@10 0.9071
cosine_ndcg@10 0.8116
cosine_mrr@10 0.781
cosine_map@100 0.7845

Information Retrieval

Metric Value
cosine_accuracy@1 0.7129
cosine_accuracy@3 0.8214
cosine_accuracy@5 0.86
cosine_accuracy@10 0.9043
cosine_precision@1 0.7129
cosine_precision@3 0.2738
cosine_precision@5 0.172
cosine_precision@10 0.0904
cosine_recall@1 0.7129
cosine_recall@3 0.8214
cosine_recall@5 0.86
cosine_recall@10 0.9043
cosine_ndcg@10 0.8072
cosine_mrr@10 0.7762
cosine_map@100 0.7797

Information Retrieval

Metric Value
cosine_accuracy@1 0.71
cosine_accuracy@3 0.81
cosine_accuracy@5 0.8443
cosine_accuracy@10 0.8986
cosine_precision@1 0.71
cosine_precision@3 0.27
cosine_precision@5 0.1689
cosine_precision@10 0.0899
cosine_recall@1 0.71
cosine_recall@3 0.81
cosine_recall@5 0.8443
cosine_recall@10 0.8986
cosine_ndcg@10 0.8013
cosine_mrr@10 0.7706
cosine_map@100 0.7744

Information Retrieval

Metric Value
cosine_accuracy@1 0.6686
cosine_accuracy@3 0.78
cosine_accuracy@5 0.8257
cosine_accuracy@10 0.8757
cosine_precision@1 0.6686
cosine_precision@3 0.26
cosine_precision@5 0.1651
cosine_precision@10 0.0876
cosine_recall@1 0.6686
cosine_recall@3 0.78
cosine_recall@5 0.8257
cosine_recall@10 0.8757
cosine_ndcg@10 0.7698
cosine_mrr@10 0.7363
cosine_map@100 0.7409

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 6,300 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 9 tokens
    • mean: 20.16 tokens
    • max: 51 tokens
    • min: 4 tokens
    • mean: 45.99 tokens
    • max: 281 tokens
  • Samples:
    anchor positive
    What percentage of total revenues did STELARA account for in fiscal 2023 for the Company? Sales of the Company’s largest product, STELARA (ustekinumab), accounted for approximately 12.8% of the Company's total revenues for fiscal 2023.
    What is the effective date for the new accounting standard ASU No. 2022-04 regarding liabilities in supplier finance programs? In September 2022, the FASB issued ASU No. 2022-04, “Liabilities—Supplier Finance Programs (Topic 405-50) - Disclosure of Supplier Finance Program Obligations,” which is effective for fiscal years beginning after December 15, 2022, including interim periods within those fiscal years.
    What was the pre-tax net favorable prior period development for 2022 and what factors contributed to it? The pre-tax net favorable prior period development for 2022 was $876 million. Adverse development factors like molestation claims, primarily reviver statute-related compromising $155 million, and $113 million related to legacy asbestos and environmental exposures significantly influenced this outcome.
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • fp16: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8122 10 1.6789 - - - - -
0.9746 12 - 0.7976 0.8019 0.7944 0.7781 0.7387
1.6244 20 0.6377 - - - - -
1.9492 24 - 0.8071 0.8080 0.8016 0.7940 0.7594
2.4365 30 0.5295 - - - - -
2.9239 36 - 0.8110 0.8122 0.8067 0.8000 0.7697
3.2487 40 0.4367 - - - - -
3.8985 48 - 0.8111 0.8116 0.8072 0.8013 0.7698
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.12
  • Sentence Transformers: 4.1.0
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 1.5.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
11
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for TatvaRA/bge-base-financial-matryoshka

Finetuned
(423)
this model

Evaluation results