|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- TheFinAI/FinCoT |
|
language: |
|
- en |
|
base_model: |
|
- Qwen/Qwen3-8B |
|
pipeline_tag: text-generation |
|
tags: |
|
- finance |
|
--- |
|
# π¦ Fino1-8B |
|
|
|
**Fin-o1-8B** is a fine-tuned version of **Qwen3-8B**, designed to improve performance on **[financial reasoning tasks]**. This model has been trained using **SFT** and **RF** on **TheFinAI/Fino1_Reasoning_Path_FinQA**, enhancing its capabilities in **financial reasoning tasks**. |
|
Check our paper arxiv.org/abs/2502.08127 for more details. |
|
|
|
## π Model Details |
|
- **Model Name**: `Fin-o1-8B` |
|
- **Base Model**: `Qwen3-8B` |
|
- **Fine-Tuned On**: `TheFinAI/FinCoT` Derived from FinQA, TATQA, DocMath-Eval, Econ-Logic, BizBench-QA, DocFinQA dataset. |
|
- **Training Method**: SFT and GRPO |
|
- **Objective**: `[Enhance performance on specific tasks such as financial mathemtical reasoning]` |
|
- **Tokenizer**: Inherited from `Qwen3-8B` |
|
|
|
|
|
## π Training Configuration |
|
- **Training Hardware**: `GPU: [e.g., 8xA100]` |
|
- **Batch Size**: `[e.g., 16]` |
|
- **Learning Rate**: `[e.g., 2e-5]` |
|
- **Epochs**: `[e.g., 3]` |
|
- **Optimizer**: `[e.g., AdamW, LAMB]` |
|
|
|
## π§ Usage |
|
To use `Fin-o1-8B` with Hugging Face's `transformers` library: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "TheFinAI/Fin-o1-8B" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
|
input_text = "What is the results of 3-5?" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
output = model.generate(**inputs, max_new_tokens=200) |
|
print(tokenizer.decode(output[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## π‘ Citation |
|
|
|
If you use this model in your research, please cite: |
|
```python |
|
@article{qian2025fino1, |
|
title={Fino1: On the Transferability of Reasoning Enhanced LLMs to Finance}, |
|
author={Qian, Lingfei and Zhou, Weipeng and Wang, Yan and Peng, Xueqing and Huang, Jimin and Xie, Qianqian}, |
|
journal={arXiv preprint arXiv:2502.08127}, |
|
year={2025} |
|
} |