B001_cleaned / README.md
Theoreticallyhugo's picture
trainer: training complete at 2024-02-10 17:34:36.971515.
107c002 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - essay_dataset
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: B001_cleaned
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: essay_dataset
          type: essay_dataset
          config: cleaned
          split: test
          args: cleaned
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.10526315789473684
          - name: Precision
            type: precision
            value:
              precision: 0.013157894736842105
          - name: Recall
            type: recall
            value:
              recall: 0.125
          - name: F1
            type: f1
            value:
              f1: 0.02380952380952381

B001_cleaned

This model is a fine-tuned version of distilbert-base-uncased on the essay_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2117
  • Accuracy: {'accuracy': 0.10526315789473684}
  • Precision: {'precision': 0.013157894736842105}
  • Recall: {'recall': 0.125}
  • F1: {'f1': 0.02380952380952381}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 13 2.2061 {'accuracy': 0.10526315789473684} {'precision': 0.013157894736842105} {'recall': 0.125} {'f1': 0.02380952380952381}
No log 2.0 26 2.2050 {'accuracy': 0.10526315789473684} {'precision': 0.013157894736842105} {'recall': 0.125} {'f1': 0.02380952380952381}
No log 3.0 39 2.2045 {'accuracy': 0.10526315789473684} {'precision': 0.013157894736842105} {'recall': 0.125} {'f1': 0.02380952380952381}
No log 4.0 52 2.2117 {'accuracy': 0.10526315789473684} {'precision': 0.013157894736842105} {'recall': 0.125} {'f1': 0.02380952380952381}

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1