bert-ner-essays-find_span

This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1978
  • B-span: {'precision': 0.8451327433628318, 'recall': 0.8856259659969088, 'f1-score': 0.8649056603773585, 'support': 647.0}
  • I-span: {'precision': 0.9613473219215903, 'recall': 0.9557182067703568, 'f1-score': 0.9585244999082401, 'support': 10930.0}
  • O: {'precision': 0.89764120320277, 'recall': 0.9040976460331299, 'f1-score': 0.9008578564447822, 'support': 4588.0}
  • Accuracy: 0.9383
  • Macro avg: {'precision': 0.9013737561623975, 'recall': 0.9151472729334652, 'f1-score': 0.9080960055767937, 'support': 16165.0}
  • Weighted avg: {'precision': 0.9386145965884964, 'recall': 0.9382616764614908, 'f1-score': 0.9384103056993428, 'support': 16165.0}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss B-span I-span O Accuracy Macro avg Weighted avg
No log 1.0 196 0.1948 {'precision': 0.8323076923076923, 'recall': 0.8361669242658424, 'f1-score': 0.8342328450269854, 'support': 647.0} {'precision': 0.9544583371360774, 'recall': 0.9568161024702653, 'f1-score': 0.9556357655229132, 'support': 10930.0} {'precision': 0.8977621763931549, 'recall': 0.8918918918918919, 'f1-score': 0.89481740651651, 'support': 4588.0} 0.9336 {'precision': 0.8948427352789748, 'recall': 0.894958306209333, 'f1-score': 0.8948953390221361, 'support': 16165.0} {'precision': 0.9334776100904544, 'recall': 0.9335601608413239, 'f1-score': 0.9335149909678719, 'support': 16165.0}
No log 2.0 392 0.1840 {'precision': 0.8016528925619835, 'recall': 0.8995363214837713, 'f1-score': 0.8477785870356882, 'support': 647.0} {'precision': 0.9520368530394725, 'recall': 0.9643183897529735, 'f1-score': 0.9581382664424344, 'support': 10930.0} {'precision': 0.9198717948717948, 'recall': 0.8757628596338274, 'f1-score': 0.8972755694506476, 'support': 4588.0} 0.9366 {'precision': 0.8911871801577503, 'recall': 0.9132058569568574, 'f1-score': 0.9010641409762568, 'support': 16165.0} {'precision': 0.936888587694453, 'recall': 0.9365914011753789, 'f1-score': 0.936446910650632, 'support': 16165.0}
0.2568 3.0 588 0.1978 {'precision': 0.8451327433628318, 'recall': 0.8856259659969088, 'f1-score': 0.8649056603773585, 'support': 647.0} {'precision': 0.9613473219215903, 'recall': 0.9557182067703568, 'f1-score': 0.9585244999082401, 'support': 10930.0} {'precision': 0.89764120320277, 'recall': 0.9040976460331299, 'f1-score': 0.9008578564447822, 'support': 4588.0} 0.9383 {'precision': 0.9013737561623975, 'recall': 0.9151472729334652, 'f1-score': 0.9080960055767937, 'support': 16165.0} {'precision': 0.9386145965884964, 'recall': 0.9382616764614908, 'f1-score': 0.9384103056993428, 'support': 16165.0}

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
17
Safetensors
Model size
108M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Theoreticallyhugo/bert-ner-essays-find_span

Finetuned
(2423)
this model