bert-ner-essays-label_span
This model is a fine-tuned version of bert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8463
- Claim: {'precision': 0.4140127388535032, 'recall': 0.4513888888888889, 'f1-score': 0.4318936877076412, 'support': 144.0}
- Majorclaim: {'precision': 0.6923076923076923, 'recall': 0.5, 'f1-score': 0.5806451612903226, 'support': 72.0}
- Premise: {'precision': 0.8025, 'recall': 0.816793893129771, 'f1-score': 0.8095838587641867, 'support': 393.0}
- Accuracy: 0.6929
- Macro avg: {'precision': 0.6362734770537318, 'recall': 0.5893942606728867, 'f1-score': 0.6073742359207168, 'support': 609.0}
- Weighted avg: {'precision': 0.6976132811840038, 'recall': 0.6929392446633826, 'f1-score': 0.6932111644287832, 'support': 609.0}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Claim | Majorclaim | Premise | Accuracy | Macro avg | Weighted avg |
---|---|---|---|---|---|---|---|---|---|
0.7343 | 1.0 | 533 | 0.6230 | {'precision': 0.47058823529411764, 'recall': 0.2777777777777778, 'f1-score': 0.3493449781659389, 'support': 144.0} | {'precision': 0.5647058823529412, 'recall': 0.6666666666666666, 'f1-score': 0.6114649681528662, 'support': 72.0} | {'precision': 0.7790432801822323, 'recall': 0.8702290076335878, 'f1-score': 0.8221153846153846, 'support': 393.0} | 0.7061 | {'precision': 0.6047791326097637, 'recall': 0.6048911506926774, 'f1-score': 0.5943084436447299, 'support': 609.0} | {'precision': 0.6807677151451265, 'recall': 0.7060755336617406, 'f1-score': 0.6854228254790602, 'support': 609.0} |
0.5313 | 2.0 | 1066 | 0.6606 | {'precision': 0.4491525423728814, 'recall': 0.3680555555555556, 'f1-score': 0.4045801526717558, 'support': 144.0} | {'precision': 0.6612903225806451, 'recall': 0.5694444444444444, 'f1-score': 0.6119402985074627, 'support': 72.0} | {'precision': 0.7878787878787878, 'recall': 0.8600508905852418, 'f1-score': 0.8223844282238443, 'support': 393.0} | 0.7094 | {'precision': 0.6327738842774381, 'recall': 0.5991836301950806, 'f1-score': 0.6129682931343542, 'support': 609.0} | {'precision': 0.6928197585613547, 'recall': 0.7093596059113301, 'f1-score': 0.6987131753189507, 'support': 609.0} |
0.3551 | 3.0 | 1599 | 0.8463 | {'precision': 0.4140127388535032, 'recall': 0.4513888888888889, 'f1-score': 0.4318936877076412, 'support': 144.0} | {'precision': 0.6923076923076923, 'recall': 0.5, 'f1-score': 0.5806451612903226, 'support': 72.0} | {'precision': 0.8025, 'recall': 0.816793893129771, 'f1-score': 0.8095838587641867, 'support': 393.0} | 0.6929 | {'precision': 0.6362734770537318, 'recall': 0.5893942606728867, 'f1-score': 0.6073742359207168, 'support': 609.0} | {'precision': 0.6976132811840038, 'recall': 0.6929392446633826, 'f1-score': 0.6932111644287832, 'support': 609.0} |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 31
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Theoreticallyhugo/bert-ner-essays-label_span
Base model
google-bert/bert-base-cased