metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- essay_dataset
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: distilbert_B001
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: essay_dataset
type: essay_dataset
config: mittelwerte
split: test
args: mittelwerte
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 0.5280898876404494
- name: Precision
type: precision
value:
precision: 0.19377125850340135
- name: Recall
type: recall
value:
recall: 0.2962962962962963
- name: F1
type: f1
value:
f1: 0.21358825283243887
distilbert_B001
This model is a fine-tuned version of distilbert-base-uncased on the essay_dataset dataset. It achieves the following results on the evaluation set:
- Loss: 1.3451
- Accuracy: {'accuracy': 0.5280898876404494}
- Precision: {'precision': 0.19377125850340135}
- Recall: {'recall': 0.2962962962962963}
- F1: {'f1': 0.21358825283243887}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 42 | 1.6131 | {'accuracy': 0.4044943820224719} | {'precision': 0.10313447927199192} | {'recall': 0.2456896551724138} | {'f1': 0.13425925925925927} |
No log | 2.0 | 84 | 1.4558 | {'accuracy': 0.4943820224719101} | {'precision': 0.16714285714285715} | {'recall': 0.24942129629629628} | {'f1': 0.19666725679383906} |
No log | 3.0 | 126 | 1.3405 | {'accuracy': 0.5730337078651685} | {'precision': 0.20856060606060606} | {'recall': 0.31513409961685823} | {'f1': 0.2357282221467332} |
No log | 4.0 | 168 | 1.3451 | {'accuracy': 0.5280898876404494} | {'precision': 0.19377125850340135} | {'recall': 0.2962962962962963} | {'f1': 0.21358825283243887} |
Framework versions
- Transformers 4.37.1
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1