distilbert_B001 / README.md
Theoreticallyhugo's picture
trainer: training complete at 2024-02-10 15:18:00.260578.
3e2b2a4 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - essay_dataset
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: distilbert_B001
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: essay_dataset
          type: essay_dataset
          config: mittelwerte
          split: test
          args: mittelwerte
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.5280898876404494
          - name: Precision
            type: precision
            value:
              precision: 0.19377125850340135
          - name: Recall
            type: recall
            value:
              recall: 0.2962962962962963
          - name: F1
            type: f1
            value:
              f1: 0.21358825283243887

distilbert_B001

This model is a fine-tuned version of distilbert-base-uncased on the essay_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3451
  • Accuracy: {'accuracy': 0.5280898876404494}
  • Precision: {'precision': 0.19377125850340135}
  • Recall: {'recall': 0.2962962962962963}
  • F1: {'f1': 0.21358825283243887}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 42 1.6131 {'accuracy': 0.4044943820224719} {'precision': 0.10313447927199192} {'recall': 0.2456896551724138} {'f1': 0.13425925925925927}
No log 2.0 84 1.4558 {'accuracy': 0.4943820224719101} {'precision': 0.16714285714285715} {'recall': 0.24942129629629628} {'f1': 0.19666725679383906}
No log 3.0 126 1.3405 {'accuracy': 0.5730337078651685} {'precision': 0.20856060606060606} {'recall': 0.31513409961685823} {'f1': 0.2357282221467332}
No log 4.0 168 1.3451 {'accuracy': 0.5280898876404494} {'precision': 0.19377125850340135} {'recall': 0.2962962962962963} {'f1': 0.21358825283243887}

Framework versions

  • Transformers 4.37.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1