ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4
This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the stable-baselines3 library. It is taken from RL-trained-agents
Usage (with Stable-baselines3)
Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed:
pip install stable-baselines3
pip install huggingface_sb3
Then, you can use the model like this:
import gym
from huggingface_sb3 import load_from_hub
from stable_baselines3 import PPO
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.env_util import make_atari_env
from stable_baselines3.common.vec_env import VecFrameStack
# Retrieve the model from the hub
## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name})
## filename = name of the model zip file from the repository
checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="ppo-SpaceInvadersNoFrameskip-v4.zip")
model = PPO.load(checkpoint)
Evaluation Results
Mean_reward: 627.160 (162 eval episodes)
- Downloads last month
- 16