|
import os |
|
import time |
|
import logging |
|
import re |
|
print(f"Initial logging._nameToLevel: {logging._nameToLevel}") |
|
from pathlib import Path |
|
from typing import List, Dict, Any, Optional |
|
|
|
import soundfile as sf |
|
import numpy as np |
|
from fastapi import FastAPI, HTTPException |
|
from pydantic import BaseModel |
|
|
|
|
|
|
|
import sys |
|
SCRIPT_DIR = Path(__file__).resolve().parent |
|
if str(SCRIPT_DIR) not in sys.path: |
|
sys.path.append(str(SCRIPT_DIR)) |
|
|
|
try: |
|
from sensevoice_rknn import WavFrontend, SenseVoiceInferenceSession, FSMNVad, languages |
|
except ImportError as e: |
|
logging.error(f"Error importing from sensevoice_rknn.py: {e}") |
|
logging.error("Please ensure sensevoice_rknn.py is in the same directory as server.py or in your PYTHONPATH.") |
|
|
|
class WavFrontend: |
|
def __init__(self, *args, **kwargs): raise NotImplementedError("WavFrontend not loaded") |
|
def get_features(self, *args, **kwargs): raise NotImplementedError("WavFrontend not loaded") |
|
class SenseVoiceInferenceSession: |
|
def __init__(self, *args, **kwargs): raise NotImplementedError("SenseVoiceInferenceSession not loaded") |
|
def __call__(self, *args, **kwargs): raise NotImplementedError("SenseVoiceInferenceSession not loaded") |
|
class FSMNVad: |
|
def __init__(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded") |
|
def segments_offline(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded") |
|
class Vad: |
|
def all_reset_detection(self, *args, **kwargs): raise NotImplementedError("FSMNVad not loaded") |
|
vad = Vad() |
|
|
|
languages = {"en": 4} |
|
|
|
app = FastAPI() |
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
logger.setLevel(logging.INFO) |
|
|
|
|
|
MODEL_BASE_PATH = Path(__file__).resolve().parent |
|
|
|
|
|
|
|
MVN_PATH = MODEL_BASE_PATH / "am.mvn" |
|
EMBEDDING_NPY_PATH = MODEL_BASE_PATH / "embedding.npy" |
|
ENCODER_RKNN_PATH = MODEL_BASE_PATH / "sense-voice-encoder.rknn" |
|
BPE_MODEL_PATH = MODEL_BASE_PATH / "chn_jpn_yue_eng_ko_spectok.bpe.model" |
|
VAD_CONFIG_DIR = MODEL_BASE_PATH |
|
|
|
|
|
w_frontend: Optional[WavFrontend] = None |
|
asr_model: Optional[SenseVoiceInferenceSession] = None |
|
vad_model: Optional[FSMNVad] = None |
|
|
|
@app.on_event("startup") |
|
def load_models(): |
|
global w_frontend, asr_model, vad_model |
|
logging.info("Loading models...") |
|
start_time = time.time() |
|
try: |
|
if not MVN_PATH.exists(): |
|
raise FileNotFoundError(f"CMVN file not found: {MVN_PATH}") |
|
w_frontend = WavFrontend(cmvn_file=str(MVN_PATH)) |
|
|
|
if not EMBEDDING_NPY_PATH.exists() or not ENCODER_RKNN_PATH.exists() or not BPE_MODEL_PATH.exists(): |
|
raise FileNotFoundError( |
|
f"One or more ASR model files not found: " |
|
f"Embedding: {EMBEDDING_NPY_PATH}, Encoder: {ENCODER_RKNN_PATH}, BPE: {BPE_MODEL_PATH}" |
|
) |
|
asr_model = SenseVoiceInferenceSession( |
|
embedding_model_file=str(EMBEDDING_NPY_PATH), |
|
encoder_model_file=str(ENCODER_RKNN_PATH), |
|
bpe_model_file=str(BPE_MODEL_PATH), |
|
|
|
device_id=-1, |
|
intra_op_num_threads=4 |
|
) |
|
|
|
|
|
if not (VAD_CONFIG_DIR / "fsmn-config.yaml").exists() or not (VAD_CONFIG_DIR / "fsmnvad-offline.onnx").exists(): |
|
raise FileNotFoundError(f"VAD config or model not found in {VAD_CONFIG_DIR}") |
|
vad_model = FSMNVad(config_dir=str(VAD_CONFIG_DIR)) |
|
|
|
logging.info(f"Models loaded successfully in {time.time() - start_time:.2f} seconds.") |
|
except FileNotFoundError as e: |
|
logging.error(f"Model loading failed: {e}") |
|
|
|
except Exception as e: |
|
logging.error(f"An unexpected error occurred during model loading: {e}") |
|
|
|
|
|
class TranscribeRequest(BaseModel): |
|
audio_file_path: str |
|
language: str = "en" |
|
use_itn: bool = False |
|
|
|
class Segment(BaseModel): |
|
start_time_s: float |
|
end_time_s: float |
|
text: str |
|
|
|
class TranscribeResponse(BaseModel): |
|
full_transcription: str |
|
segments: List[Segment] |
|
|
|
@app.post("/transcribe", response_model=str) |
|
async def transcribe_audio(request: TranscribeRequest): |
|
if w_frontend is None or asr_model is None or vad_model is None: |
|
logging.error("Models not loaded. Transcription cannot proceed.") |
|
raise HTTPException(status_code=503, detail="Models are not loaded. Please check server logs.") |
|
|
|
audio_path = Path(request.audio_file_path) |
|
if not audio_path.exists() or not audio_path.is_file(): |
|
logging.error(f"Audio file not found: {audio_path}") |
|
raise HTTPException(status_code=404, detail=f"Audio file not found: {audio_path}") |
|
|
|
try: |
|
waveform, sample_rate = sf.read( |
|
str(audio_path), |
|
dtype="float32", |
|
always_2d=True |
|
) |
|
except Exception as e: |
|
logging.error(f"Error reading audio file {audio_path}: {e}") |
|
raise HTTPException(status_code=400, detail=f"Could not read audio file: {e}") |
|
|
|
if sample_rate != 16000: |
|
|
|
logging.warning(f"Audio sample rate is {sample_rate}Hz, expected 16000Hz. Results may be suboptimal.") |
|
|
|
|
|
logging.info(f"Processing audio: {audio_path}, Duration: {len(waveform) / sample_rate:.2f}s, Channels: {waveform.shape[1]}") |
|
|
|
lang_code = languages.get(request.language.lower()) |
|
if lang_code is None: |
|
logging.warning(f"Unsupported language: {request.language}. Defaulting to 'en'. Supported: {list(languages.keys())}") |
|
lang_code = languages.get("en", 0) |
|
|
|
all_segments_text: List[str] = [] |
|
detailed_segments: List[Segment] = [] |
|
processing_start_time = time.time() |
|
|
|
for channel_id in range(waveform.shape[1]): |
|
channel_data = waveform[:, channel_id] |
|
logging.info(f"Processing channel {channel_id + 1}/{waveform.shape[1]}") |
|
|
|
try: |
|
|
|
speech_segments = vad_model.segments_offline(channel_data) |
|
except Exception as e: |
|
logging.error(f"VAD processing failed for channel {channel_id}: {e}") |
|
|
|
continue |
|
|
|
for part_idx, part in enumerate(speech_segments): |
|
start_sample = int(part[0] * 16) |
|
end_sample = int(part[1] * 16) |
|
segment_audio = channel_data[start_sample:end_sample] |
|
|
|
if len(segment_audio) == 0: |
|
logging.info(f"Empty audio segment for channel {channel_id}, part {part_idx}. Skipping.") |
|
continue |
|
|
|
try: |
|
|
|
audio_feats = w_frontend.get_features(segment_audio) |
|
|
|
asr_result_text_raw = asr_model( |
|
audio_feats[None, ...], |
|
language=lang_code, |
|
use_itn=request.use_itn, |
|
) |
|
|
|
asr_result_text_cleaned = re.sub(r"<\|[^\|]+\|>", "", asr_result_text_raw).strip() |
|
|
|
segment_start_s = part[0] / 1000.0 |
|
segment_end_s = part[1] / 1000.0 |
|
logging.info(f"[Ch{channel_id}] [{segment_start_s:.2f}s - {segment_end_s:.2f}s] Raw: {asr_result_text_raw} Cleaned: {asr_result_text_cleaned}") |
|
all_segments_text.append(asr_result_text_cleaned) |
|
detailed_segments.append(Segment(start_time_s=segment_start_s, end_time_s=segment_end_s, text=asr_result_text_cleaned)) |
|
except Exception as e: |
|
logging.error(f"ASR processing failed for segment {part_idx} in channel {channel_id}: {e}") |
|
|
|
detailed_segments.append(Segment(start_time_s=part[0]/1000.0, end_time_s=part[1]/1000.0, text="[ASR_ERROR]")) |
|
|
|
vad_model.vad.all_reset_detection() |
|
|
|
full_transcription = " ".join(all_segments_text).strip() |
|
logging.info(f"Transcription complete in {time.time() - processing_start_time:.2f}s. Result: {full_transcription}") |
|
|
|
return full_transcription |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
|
|
MINIMAL_LOGGING_CONFIG = { |
|
"version": 1, |
|
"disable_existing_loggers": False, |
|
"formatters": { |
|
"default": { |
|
"()": "uvicorn.logging.DefaultFormatter", |
|
"fmt": "%(levelprefix)s %(message)s", |
|
"use_colors": None, |
|
}, |
|
}, |
|
"handlers": { |
|
"default": { |
|
"formatter": "default", |
|
"class": "logging.StreamHandler", |
|
"stream": "ext://sys.stderr", |
|
}, |
|
}, |
|
"loggers": { |
|
"uvicorn": { |
|
"handlers": ["default"], |
|
"level": logging.INFO, |
|
"propagate": False, |
|
}, |
|
"uvicorn.error": { |
|
"handlers": ["default"], |
|
"level": logging.INFO, |
|
"propagate": False, |
|
}, |
|
|
|
|
|
}, |
|
|
|
__name__: { |
|
"handlers": ["default"], |
|
"level": logging.INFO, |
|
"propagate": False, |
|
} |
|
} |
|
|
|
logger.info(f"Attempting to run Uvicorn with minimal explicit log_config.") |
|
uvicorn.run(app, host="0.0.0.0", port=8000, log_config=MINIMAL_LOGGING_CONFIG) |
|
|