Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: Qwen/Qwen3-8B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: /workspace/outputs/training_data/
    ds_type: json
    data_files: 
        - knowledge.json
    type: concisechoice
dataset_prepared_path:
val_set_size: 0.05
output_dir: /workspace/outputs/FT_results

sequence_len: 2048
sample_packing: true
eval_sample_packing: true


adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
#fsdp:
#  - full_shard
#  - auto_wrap
#fsdp_config:
#  fsdp_limit_all_gathers: true
#  fsdp_sync_module_states: true
#  fsdp_offload_params: true
#  fsdp_use_orig_params: false
#  fsdp_cpu_ram_efficient_loading: true
#  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
#  fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
#  fsdp_state_dict_type: FULL_STATE_DICT
#  fsdp_sharding_strategy: FULL_SHARD
special_tokens:

# save_first_step: true  # uncomment this to validate checkpoint saving works with your config

workspace/outputs/FT_results

This model is a fine-tuned version of Qwen/Qwen3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4761
  • Memory/max Active (gib): 9.3
  • Memory/max Allocated (gib): 9.3
  • Memory/device Reserved (gib): 13.95

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 8

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 19.8155 9.21 9.21 9.35
9.8484 0.25 2 5.2837 9.3 9.3 13.95
1.4784 0.5 4 0.4333 9.3 9.3 13.95
0.7341 0.75 6 0.4041 9.3 9.3 13.95
0.5036 1.0 8 0.4761 9.3 9.3 13.95

Framework versions

  • PEFT 0.17.1
  • Transformers 4.56.1
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Tibogoss/Qwen3-8B-Knowledge_test

Base model

Qwen/Qwen3-8B-Base
Finetuned
Qwen/Qwen3-8B
Adapter
(476)
this model

Evaluation results