See axolotl config
axolotl version: 0.13.0.dev0
base_model: Qwen/Qwen3-8B
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /workspace/outputs/training_data/
ds_type: json
data_files:
- knowledge.json
type: concisechoice
dataset_prepared_path:
val_set_size: 0.05
output_dir: /workspace/outputs/FT_results
sequence_len: 2048
sample_packing: true
eval_sample_packing: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.0002
bf16: auto
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
#fsdp:
# - full_shard
# - auto_wrap
#fsdp_config:
# fsdp_limit_all_gathers: true
# fsdp_sync_module_states: true
# fsdp_offload_params: true
# fsdp_use_orig_params: false
# fsdp_cpu_ram_efficient_loading: true
# fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
# fsdp_transformer_layer_cls_to_wrap: Qwen3DecoderLayer
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_sharding_strategy: FULL_SHARD
special_tokens:
# save_first_step: true # uncomment this to validate checkpoint saving works with your config
workspace/outputs/FT_results
This model is a fine-tuned version of Qwen/Qwen3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4761
- Memory/max Active (gib): 9.3
- Memory/max Allocated (gib): 9.3
- Memory/device Reserved (gib): 13.95
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- training_steps: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|
| No log | 0 | 0 | 19.8155 | 9.21 | 9.21 | 9.35 |
| 9.8484 | 0.25 | 2 | 5.2837 | 9.3 | 9.3 | 13.95 |
| 1.4784 | 0.5 | 4 | 0.4333 | 9.3 | 9.3 | 13.95 |
| 0.7341 | 0.75 | 6 | 0.4041 | 9.3 | 9.3 | 13.95 |
| 0.5036 | 1.0 | 8 | 0.4761 | 9.3 | 9.3 | 13.95 |
Framework versions
- PEFT 0.17.1
- Transformers 4.56.1
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- -