SentenceTransformer based on Tnt3o5/gte_legal_v3
This is a sentence-transformers model finetuned from Tnt3o5/gte_legal_v3. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Tnt3o5/gte_legal_v3
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Tnt3o5/gte-legal-v5")
# Run inference
sentences = [
'Ai có thẩm quyền_hủy tài_liệu lưu_trữ hết giá_trị của Viện kiểm_sát_nhân_dân tối_cao ?',
'Thẩm quyền_hủy tài_liệu hết giá_trị của Viện kiểm_sát_nhân_dân các cấp_Lãnh đạo Viện kiểm_sát_nhân_dân tối_cao : Quyết_định hủy hồ_sơ , tài_liệu quản_lý nhà_nước tại kho lưu_trữ cơ_quan Viện kiểm_sát_nhân_dân tối_cao sau khi có văn_bản thẩm_định của Cục Văn_thư và Lưu_trữ Nhà_nước . Cơ_quan điều_tra Viện kiểm_sát_nhân_dân tối_cao , Tạp_chí Kiểm_sát , Báo Bảo_vệ pháp_luật , Trường Đại_học Kiểm_sát Hà_Nội , Trường Đào_tạo , Bồi_dưỡng nghiệp_vụ kiểm_sát tại Thành_phố Hồ Chí_Minh , Viện kiểm_sát_nhân_dân cấp cao : Quyết_định việc hủy hồ_sơ , tài_liệu quản_lý nhà_nước sau khi có văn_bản thẩm_định của Cục Văn_thư và Lưu_trữ Nhà_nước . Viện kiểm_sát_nhân_dân cấp tỉnh , huyện : Quyết_định việc hủy hồ_sơ , tài_liệu quản_lý nhà_nước sau khi có văn_bản thẩm_định của cơ_quan quản_lý nhà_nước về lưu_trữ của tỉnh , thành_phố .',
'“ Điều Bồi_thường thiệt_hại do cây_cối gây ra Chủ sở_hữu , người chiếm_hữu , người được giao quản_lý phải bồi_thường thiệt_hại do cây_cối gây ra . ”',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 120,952 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 21.41 tokens
- max: 50 tokens
- min: 12 tokens
- mean: 216.87 tokens
- max: 718 tokens
- Samples:
anchor positive " Giải_thưởng Nguyễn Đức_Cảnh " và " Giải_thưởng Nguyễn Văn_Linh " theo quy_định là giải_thưởng như thế_nào ?
Giải_thưởng “ Giải_thưởng Nguyễn Đức_Cảnh ” của Tổng Liên_đoàn : “ Giải_thưởng Nguyễn Đức_Cảnh ” phần_thưởng cao_quý của Tổng Liên_đoàn Lao_động Việt_Nam được xét , trao tặng_cho công_nhân , lao_động trực_tiếp sản_xuất tại các doanh_nghiệp thuộc các thành_phần kinh_tế có thành_tích xuất_sắc tiêu_biểu nhất trong lao_động_sản_xuất ; có nhiều sáng_kiến cải_tiến kỹ_thuật ; tích_cực đào_tạo , kèm_cặp , bồi_dưỡng , giúp_đỡ đồng_nghiệp nâng_cao trình_độ tay_nghề , chuyên_môn nghiệp_vụ góp_phần xây_dựng doanh_nghiệp , đơn_vị phát_triển bền_vững , xây_dựng giai_cấp công_nhân và tổ_chức Công_đoàn vững_mạnh . “ Giải_thưởng Nguyễn Đức_Cảnh ” được tổ_chức trao_tặng 5 năm 1 lần vào dịp “ Tháng Công_nhân ” của năm tổ_chức Đại_hội Công_đoàn Việt_Nam . Một cá_nhân chỉ được trao_tặng Giải_thưởng 01 lần . Năm tổ_chức trao_tặng “ Giải_thưởng Nguyễn Đức_Cảnh ” , Đoàn Chủ_tịch Tổng Liên_đoàn ban_hành hướng_dẫn riêng về xét , trao_tặng “ Giải_thưởng Nguyễn Đức_Cảnh ” . “ Giải_thưởng Nguyễn Văn_Linh ” của Tổn...
" Người_lớn ( trên 16 tuổi ) " được hiểu là “ Người_lớn và trẻ_em trên 16 tuổi ”
" Khi triển_khai “ Hướng_dẫn quản_lý tại nhà đối_với người mắc COVID - 19 ” , đề_nghị hướng_dẫn , làm rõ một_số nội_dung như sau : . Mục 3 “ Người_lớn ( trên 16 tuổ ” : đề_nghị hướng_dẫn là “ Người_lớn và trẻ_em trên 16 tuổi ” . "
03 Quy_chuẩn kỹ_thuật quốc_gia được ban_hành tại Thông_tư 04 là Quy_chuẩn nào ?
Ban_hành kèm theo Thông_tư này 03 Quy_chuẩn kỹ_thuật quốc_gia sau : Quy_chuẩn kỹ_thuật quốc_gia về bộ trục bánh_xe của đầu_máy , toa_xe Số_hiệu : QCVN 110 : 2023/BGTVT. Quy_chuẩn kỹ_thuật quốc_gia về bộ móc_nối , đỡ đấm của đầu_máy , toa_xe Số_hiệu : QCVN 111 : 2023/BGTVT. Quy_chuẩn kỹ_thuật quốc_gia về van hãm sử_dụng trên đầu_máy , toa_xe Số_hiệu : QCVN 112 : 2023/BGTVT.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Evaluation Dataset
Unnamed Dataset
- Size: 5,109 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 21.41 tokens
- max: 50 tokens
- min: 12 tokens
- mean: 216.87 tokens
- max: 718 tokens
- Samples:
anchor positive " Giải_thưởng Nguyễn Đức_Cảnh " và " Giải_thưởng Nguyễn Văn_Linh " theo quy_định là giải_thưởng như thế_nào ?
Giải_thưởng “ Giải_thưởng Nguyễn Đức_Cảnh ” của Tổng Liên_đoàn : “ Giải_thưởng Nguyễn Đức_Cảnh ” phần_thưởng cao_quý của Tổng Liên_đoàn Lao_động Việt_Nam được xét , trao tặng_cho công_nhân , lao_động trực_tiếp sản_xuất tại các doanh_nghiệp thuộc các thành_phần kinh_tế có thành_tích xuất_sắc tiêu_biểu nhất trong lao_động_sản_xuất ; có nhiều sáng_kiến cải_tiến kỹ_thuật ; tích_cực đào_tạo , kèm_cặp , bồi_dưỡng , giúp_đỡ đồng_nghiệp nâng_cao trình_độ tay_nghề , chuyên_môn nghiệp_vụ góp_phần xây_dựng doanh_nghiệp , đơn_vị phát_triển bền_vững , xây_dựng giai_cấp công_nhân và tổ_chức Công_đoàn vững_mạnh . “ Giải_thưởng Nguyễn Đức_Cảnh ” được tổ_chức trao_tặng 5 năm 1 lần vào dịp “ Tháng Công_nhân ” của năm tổ_chức Đại_hội Công_đoàn Việt_Nam . Một cá_nhân chỉ được trao_tặng Giải_thưởng 01 lần . Năm tổ_chức trao_tặng “ Giải_thưởng Nguyễn Đức_Cảnh ” , Đoàn Chủ_tịch Tổng Liên_đoàn ban_hành hướng_dẫn riêng về xét , trao_tặng “ Giải_thưởng Nguyễn Đức_Cảnh ” . “ Giải_thưởng Nguyễn Văn_Linh ” của Tổn...
" Người_lớn ( trên 16 tuổi ) " được hiểu là “ Người_lớn và trẻ_em trên 16 tuổi ”
" Khi triển_khai “ Hướng_dẫn quản_lý tại nhà đối_với người mắc COVID - 19 ” , đề_nghị hướng_dẫn , làm rõ một_số nội_dung như sau : . Mục 3 “ Người_lớn ( trên 16 tuổ ” : đề_nghị hướng_dẫn là “ Người_lớn và trẻ_em trên 16 tuổi ” . "
03 Quy_chuẩn kỹ_thuật quốc_gia được ban_hành tại Thông_tư 04 là Quy_chuẩn nào ?
Ban_hành kèm theo Thông_tư này 03 Quy_chuẩn kỹ_thuật quốc_gia sau : Quy_chuẩn kỹ_thuật quốc_gia về bộ trục bánh_xe của đầu_máy , toa_xe Số_hiệu : QCVN 110 : 2023/BGTVT. Quy_chuẩn kỹ_thuật quốc_gia về bộ móc_nối , đỡ đấm của đầu_máy , toa_xe Số_hiệu : QCVN 111 : 2023/BGTVT. Quy_chuẩn kỹ_thuật quốc_gia về van hãm sử_dụng trên đầu_máy , toa_xe Số_hiệu : QCVN 112 : 2023/BGTVT.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256 ], "matryoshka_weights": [ 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16gradient_accumulation_steps
: 8learning_rate
: 1e-05weight_decay
: 0.01max_grad_norm
: 0.2num_train_epochs
: 5lr_scheduler_type
: cosinewarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedgradient_checkpointing
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 8eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 0.2num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Truegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.5291 | 500 | 1.2711 |
1.0578 | 1000 | 1.0203 |
1.5869 | 1500 | 1.0266 |
2.1156 | 2000 | 0.8704 |
2.6447 | 2500 | 0.8485 |
3.1734 | 3000 | 0.7169 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.3.0
- Transformers: 4.45.1
- PyTorch: 2.4.0
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Tnt3o5/gte-legal-v5
Base model
Tnt3o5/gte_legal_v3