Built with Axolotl

See axolotl config

axolotl version: 0.10.0.dev0

# === Model Configuration ===
base_model: Delta-Vector/GLM-4-32B-Tulu-Instruct
load_in_8bit: false
load_in_4bit: true

# === HF Configuration === 
hub_model_id: ToastyPigeon/glm-books-lora
hub_strategy: "checkpoint"

# === Training Setup ===
num_epochs: 1
micro_batch_size: 2
gradient_accumulation_steps: 8
sequence_len: 2048
#sequence_parallel_degree: 2
#heads_k_stride: 1
sample_packing: false
pad_to_sequence_len: false
#max_steps: 10
# === Evaluation ===
val_set_size: 0.01
evals_per_epoch: 10
#eval_steps: 20
#max_steps: 60
#eval_table_size:
eval_max_new_tokens: 128
eval_sample_packing: false
#eval_strategy: "no"

# === LoRA Configuration ===
adapter: qlora
lora_model_dir:
lora_r: 64
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
peft_use_rslora: false
lora_modules_to_save:
#  - embed_tokens
#  - lm_head
#fix_untrained_tokens: true
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true

# === Hyperparameter Configuration ===
#optimizer: apollo_adamw_layerwise
warmup_steps: 0
optimizer: adamw_torch_fused
#optimizer: paged_adamw_8bit
#optim_args:
#  enable_stochastic_rounding: true
#  enable_cautious: true
#  enable_8bit: true
# Apollo-mini configuration:
#optim_args: "proj=random,rank=128,scale=128.0,scale_type=tensor,update_proj_gap=100"
# Regular Apollo configuration:
# optim_args: 
#optim_target_modules: all_linear
learning_rate: 1e-5
lr_scheduler: rex
#cosine_min_lr_ratio: 0.2
#lr_scheduler: cosine_with_min_lr
#lr_scheduler_kwargs:
#  cosine_min_lr: 1e-6
weight_decay: 0.0001
max_grad_norm: 2.0
#warmup_steps: 0
#warmup_ratio: 0.025


# === Data Configuration ===
#chat_template: jinja
#chat_template_jinja: "{%- set default_system_message = \"You are Mistral Small 3, a Large Language Model (LLM) created by Mistral AI, a French startup headquartered in Paris. You obediently fulfill the user's requests.\" %}\n\n{{- bos_token }}\n\n{%- if messages[0]['role'] == 'system' %}\n    {%- if messages[0]['content'] is string %}\n        {%- set system_message = messages[0]['content'] %}\n    {%- else %}\n        {%- set system_message = messages[0]['content'][0]['text'] %}\n    {%- endif %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set system_message = default_system_message %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{{- '[SYSTEM_PROMPT]' + system_message + '[/SYSTEM_PROMPT]' }}\n\n{%- for message in loop_messages %}\n    {%- if message['role'] == 'user' %}\n        {%- if message['content'] is string %}\n            {{- '[INST]' + message['content'] + '[/INST]' }}\n        {%- else %}\n            {{- '[INST]' }}\n            {%- for bl (line truncated to 1000 characters)
#chat_template: chatml
special_tokens:
#  pad_token: "<pad>"
  eos_token: "<|im_end|>"
#tokenizer_use_mistral_common: true
shuffle_merged_datasets: true
datasets:
  - path: ToastyPigeon/cowriter-instruct
    type: chat_template
    chat_template: chatml
    data_files: cowriter-4k.json
#  - path: ToastyPigeon/steve-and-marvin
#    type: completion
#    data_files: marvin.json
#  - path: allura-org/EU01-S2
#    type: chat_template
#    chat_template: chatml
#    field_messages: conversations
#    message_property_mappings:
#      role: from
#      content: value
#  - path: ToastyPigeon/gutenberg-sft
#    type: chat_template
#    chat_template: chatml
#    field_messages: conversations
#    message_property_mappings:
#      role: from
#      content: value

dataset_prepared_path: last_run_prepared


# === Plugins ===
plugins:
  - axolotl.integrations.liger.LigerPlugin
  - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin

# === Hardware Optimization ===
#gradient_checkpointing: offload
#gradient_checkpointing_kwargs:
#  use_reentrant: false
liger_rope: false
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
#liger_fused_linear_cross_entropy: true
cut_cross_entropy: true

#deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json

# === FSDP Config === 
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_activation_checkpointing: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Glm4DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
# === Wandb Tracking ===
wandb_project: GLM
# wandb_entity: [WANDB_ENTITY]
# wandb_name: [WANDB_RUN_NAME]

# === Checkpointing ===
saves_per_epoch: 10
save_total_limit: 1

# === Advanced Settings ===
output_dir: /workspace/aibox-standalone-pool/axolotl/glm-tulu-ckpts
bf16: auto
flash_attention: true
train_on_inputs: false
group_by_length: false
save_safetensors: true
logging_steps: 1
gc_steps: 10
seed: 69




glm-books-lora

This model is a fine-tuned version of Delta-Vector/GLM-4-32B-Tulu-Instruct on the ToastyPigeon/cowriter-instruct dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 69
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • training_steps: 1

Training results

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.7.0+cu128
  • Datasets 3.5.1
  • Tokenizers 0.21.1
Downloads last month
9
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ToastyPigeon/glm-books-qlora