Model Card for Tonic/MistralMed
This is a medicine-focussed mistral fine tuned using keivalya/MedQuad-MedicalQnADataset
Model Details
Model Description
Trying to get better at medical Q & A
- Developed by: Tonic
- Shared by : Tonic
- Model type: Mistral Fine-Tune
- Language(s) (NLP): English
- License: MIT2.0
- Finetuned from model : mistralai/Mistral-7B-v0.1
Model Sources
- Repository: Tonic/mistralmed
- Code : github
- Demo : Tonic/MistralMed_Chat
Uses
This model can be used the same way you normally use mistral
Direct Use
This model can do better in medical question and answer scenarios.
Downstream Use
This model is intended to be further fine tuned.
Recommendations
- Do Not Use As Is
- Fine Tune This Model Further
- For Educational Purposes Only
- Benchmark your model usage
- Evaluate the model before use
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
device = "cuda" if torch.cuda.is_available() else "cpu"
base_model_id = "mistralai/Mistral-7B-v0.1"
model_directory = "Tonic/mistralmed"
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
class ChatBot:
def __init__(self):
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text
bot = ChatBot()
title = "ππ»ν λμ λ―Έμ€νΈλλ©λ μ±ν
μ μ€μ κ²μ νμν©λλ€πππ»Welcome to Tonic's MistralMed Chatπ"
description = "μ΄ κ³΅κ°μ μ¬μ©νμ¬ νμ¬ λͺ¨λΈμ ν
μ€νΈν μ μμ΅λλ€. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) λλ μ΄ κ³΅κ°μ 볡μ νκ³ λ‘컬 λλ π€HuggingFaceμμ μ¬μ©ν μ μμ΅λλ€. [Discordμμ ν¨κ» λ§λ€κΈ° μν΄ Discordμ κ°μ
νμμμ€](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on π€HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and complete the answer"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"],
outputs="text",
theme="ParityError/Anime"
)
iface.launch()
Training Details
Training Data
Training Procedure
Dataset({
features: ['qtype', 'Question', 'Answer'],
num_rows: 16407
})
Preprocessing [optional]
MistralForCausalLM(
(model): MistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x MistralDecoderLayer(
(self_attn): MistralAttention(
(q_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
(k_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
(v_proj): Linear4bit(in_features=4096, out_features=1024, bias=False)
(o_proj): Linear4bit(in_features=4096, out_features=4096, bias=False)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): MistralMLP(
(gate_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
(up_proj): Linear4bit(in_features=4096, out_features=14336, bias=False)
(down_proj): Linear4bit(in_features=14336, out_features=4096, bias=False)
(act_fn): SiLUActivation()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)
Training Hyperparameters
- Training regime:
config = LoraConfig(
r=8,
lora_alpha=16,
target_modules=[
"q_proj",
"k_proj",
"v_proj",
"o_proj",
"gate_proj",
"up_proj",
"down_proj",
"lm_head",
],
bias="none",
lora_dropout=0.05, # Conventional
task_type="CAUSAL_LM",
)
Speeds, Sizes, Times [optional]
- trainable params: 21260288 || all params: 3773331456 || trainable%: 0.5634354746703705
- TrainOutput(global_step=1000, training_loss=0.47226515007019043, metrics={'train_runtime': 3143.4141, 'train_samples_per_second': 2.545, 'train_steps_per_second': 0.318, 'total_flos': 1.75274075357184e+17, 'train_loss': 0.47226515007019043, 'epoch': 0.49})
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: A100
- Hours used: 1
- Cloud Provider: Google
- Compute Region: East1
- Carbon Emitted: 0.09
Training Results
[1000/1000 52:20, Epoch 0/1]
Step | Training Loss |
---|---|
50 | 0.474200 |
100 | 0.523300 |
150 | 0.484500 |
200 | 0.482800 |
250 | 0.498800 |
300 | 0.451800 |
350 | 0.491800 |
400 | 0.488000 |
450 | 0.472800 |
500 | 0.460400 |
550 | 0.464700 |
600 | 0.484800 |
650 | 0.474600 |
700 | 0.477900 |
750 | 0.445300 |
800 | 0.431300 |
850 | 0.461500 |
900 | 0.451200 |
950 | 0.470800 |
1000 | 0.454900 |
Model Architecture and Objective
PeftModelForCausalLM(
(base_model): LoraModel(
(model): MistralForCausalLM(
(model): MistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x MistralDecoderLayer(
(self_attn): MistralAttention(
(q_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
)
(k_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
)
(v_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=1024, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=1024, bias=False)
)
(o_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=4096, bias=False)
)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): MistralMLP(
(gate_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
)
(up_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=14336, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=4096, out_features=14336, bias=False)
)
(down_proj): Linear4bit(
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=14336, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=4096, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
(base_layer): Linear4bit(in_features=14336, out_features=4096, bias=False)
)
(act_fn): SiLUActivation()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
(lm_head): Linear(
in_features=4096, out_features=32000, bias=False
(lora_dropout): ModuleDict(
(default): Dropout(p=0.05, inplace=False)
)
(lora_A): ModuleDict(
(default): Linear(in_features=4096, out_features=8, bias=False)
)
(lora_B): ModuleDict(
(default): Linear(in_features=8, out_features=32000, bias=False)
)
(lora_embedding_A): ParameterDict()
(lora_embedding_B): ParameterDict()
)
)
)
)
Hardware
A100
Model Card Authors [optional]
Model Card Contact
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0.dev0
- Downloads last month
- 23
Model tree for Tonic/mistralmed
Base model
mistralai/Mistral-7B-v0.1