Triangle104/Magistral-Small-2506-Q4_K_M-GGUF
This model was converted to GGUF format from unsloth/Magistral-Small-2506
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Building upon Mistral Small 3.1 (2503), with added reasoning capabilities, undergoing SFT from Magistral Medium traces and RL on top, it's a small, efficient reasoning model with 24B parameters.
Magistral Small can be deployed locally, fitting within a single RTX 4090 or a 32GB RAM MacBook once quantized.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Magistral-Small-2506-Q4_K_M-GGUF --hf-file magistral-small-2506-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Magistral-Small-2506-Q4_K_M-GGUF --hf-file magistral-small-2506-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Magistral-Small-2506-Q4_K_M-GGUF --hf-file magistral-small-2506-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Magistral-Small-2506-Q4_K_M-GGUF --hf-file magistral-small-2506-q4_k_m.gguf -c 2048
- Downloads last month
- 30
4-bit
Model tree for Triangle104/Magistral-Small-2506-Q4_K_M-GGUF
Base model
mistralai/Mistral-Small-3.1-24B-Base-2503