|
--- |
|
base_model: nbeerbower/Xiaolong-Qwen3-0.6B |
|
datasets: |
|
- nbeerbower/GreatFirewall-DPO |
|
- nbeerbower/Schule-DPO |
|
- nbeerbower/Purpura-DPO |
|
- nbeerbower/Arkhaios-DPO |
|
- jondurbin/truthy-dpo-v0.1 |
|
- antiven0m/physical-reasoning-dpo |
|
- flammenai/Date-DPO-NoAsterisks |
|
- flammenai/Prude-Phi3-DPO |
|
- Atsunori/HelpSteer2-DPO |
|
- jondurbin/gutenberg-dpo-v0.1 |
|
- nbeerbower/gutenberg2-dpo |
|
- nbeerbower/gutenberg-moderne-dpo |
|
- GeneralReasoning/GeneralThought-430K |
|
- nvidia/OpenMathReasoning |
|
- nvidia/OpenCodeReasoning |
|
library_name: transformers |
|
license: apache-2.0 |
|
tags: |
|
- orpo |
|
- uncensored |
|
- reasoning |
|
- cot |
|
- llama-cpp |
|
- gguf-my-repo |
|
--- |
|
|
|
# Triangle104/Xiaolong-Qwen3-0.6B-Q5_K_M-GGUF |
|
This model was converted to GGUF format from [`nbeerbower/Xiaolong-Qwen3-0.6B`](https://huggingface.co/nbeerbower/Xiaolong-Qwen3-0.6B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/nbeerbower/Xiaolong-Qwen3-0.6B) for more details on the model. |
|
|
|
--- |
|
Xiaolong is a small, uncensored, reasoning-focused model finetuned using ORPO and QLoRA on top of Qwen3-0.6B-abliterated-TIES. |
|
|
|
Finetuning Details |
|
- |
|
|
|
- Method: ORPO |
|
- Epochs: 1.3 |
|
- Learning Rate: 5e-6, cosine decay w/ 5% warmup |
|
- Batch Size: 4 x 8 (32 effective) |
|
- Max Grad Norm: 0.3 |
|
- LoRA Rank: 64 |
|
- Hardware: 1x NVIDIA RTX A6000 |
|
|
|
Dataset Composition |
|
- |
|
~9,100 samples. 3,000 used Chain of Thought reasoning. |
|
|
|
- nbeerbower/GreatFirewall-DPO |
|
- nbeerbower/Schule-DPO |
|
- nbeerbower/Purpura-DPO |
|
- nbeerbower/Arkhaios-DPO |
|
- jondurbin/truthy-dpo-v0.1 |
|
- antiven0m/physical-reasoning-dpo |
|
- flammenai/Date-DPO-NoAsterisks |
|
- flammenai/Prude-Phi3-DPO |
|
- Atsunori/HelpSteer2-DPO (1000 samples) |
|
- jondurbin/gutenberg-dpo-v0.1 |
|
- nbeerbower/gutenberg2-dpo |
|
- nbeerbower/gutenberg-moderne-dpo |
|
|
|
Chain of Thought |
|
- |
|
- GeneralReasoning/GeneralThought-430K (1000 samples) |
|
- nvidia/OpenMathReasoning (1000 samples) |
|
- nvidia/OpenCodeReasoning (1000 samples) |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q5_K_M-GGUF --hf-file xiaolong-qwen3-0.6b-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q5_K_M-GGUF --hf-file xiaolong-qwen3-0.6b-q5_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q5_K_M-GGUF --hf-file xiaolong-qwen3-0.6b-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Xiaolong-Qwen3-0.6B-Q5_K_M-GGUF --hf-file xiaolong-qwen3-0.6b-q5_k_m.gguf -c 2048 |
|
``` |
|
|