TinyLLaMA-Alpaca / README.md
Ttimofeyka's picture
Update README.md
054870b verified
|
raw
history blame
2.72 kB
metadata
license: mit
library_name: peft
tags: []
base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
model-index:
  - name: TinyLLaMA-1.3B-Alpaca
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer

load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
  - path: mahiatlinux/merged_alpaca-1k
    type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

TinyLLaMA-1.3B-Alpaca

This model is a fine-tuned version of Josephgflowers/TinyLlama-Cinder-1.3B-Test.2 on the Alpaca dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4912

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 2

Training results

ARC_e: 57.53 Hellaswag: 0.5629

Framework versions

  • PEFT 0.9.1.dev0
  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.0