metadata
license: mit
library_name: peft
tags: []
base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
model-index:
- name: TinyLLaMA-1.3B-Alpaca
results: []
See axolotl config
axolotl version: 0.4.0
base_model: Josephgflowers/TinyLlama-Cinder-1.3B-Test.2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: mahiatlinux/merged_alpaca-1k
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 8
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
TinyLLaMA-1.3B-Alpaca
This model is a fine-tuned version of Josephgflowers/TinyLlama-Cinder-1.3B-Test.2 on the Alpaca dataset. It achieves the following results on the evaluation set:
- Loss: 1.4912
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
ARC_e: 57.53 Hellaswag: 0.5629
Framework versions
- PEFT 0.9.1.dev0
- Transformers 4.39.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.17.0
- Tokenizers 0.15.0