Tucano-2b4-Instruct / README.md
nicholasKluge's picture
Update README.md
6b3d719 verified
metadata
language:
  - pt
license: apache-2.0
library_name: transformers
tags:
  - text-generation-inference
datasets:
  - nicholasKluge/instruct-aira-dataset-v3
  - cnmoro/GPT4-500k-Augmented-PTBR-Clean
  - rhaymison/orca-math-portuguese-64k
  - nicholasKluge/reward-aira-dataset
metrics:
  - perplexity
pipeline_tag: text-generation
widget:
  - text: >-
      <instruction>Cite algumas bandas de rock brasileiras
      famosas.</instruction>
    example_title: Exemplo
  - text: >-
      <instruction>Invente uma história sobre um encanador com poderes
      mágicos.</instruction>
    example_title: Exemplo
  - text: >-
      <instruction>Qual cidade é a capital do estado do Rio Grande do
      Sul?</instruction>
    example_title: Exemplo
  - text: >-
      <instruction>Diga o nome de uma maravilha culinária característica da
      cosinha Portuguesa?</instruction>
    example_title: Exemplo
inference:
  parameters:
    repetition_penalty: 1.2
    temperature: 0.2
    top_k: 20
    top_p: 0.2
    max_new_tokens: 150
co2_eq_emissions:
  emissions: 42270
  source: CodeCarbon
  training_type: pre-training
  geographical_location: Germany
  hardware_used: NVIDIA A100-SXM4-80GB
model-index:
  - name: Tucano-2b4-Instruct
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: CALAME-PT
          type: NOVA-vision-language/calame-pt
          split: all
          args:
            num_few_shot: 0
        metrics:
          - type: acc
            value: 57.66
            name: accuracy
        source:
          url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt
          name: Context-Aware LAnguage Modeling Evaluation for Portuguese
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: LAMBADA-PT
          type: TucanoBR/lambada-pt
          split: train
          args:
            num_few_shot: 0
        metrics:
          - type: acc
            value: 39.92
            name: accuracy
        source:
          url: https://huggingface.co/datasets/TucanoBR/lambada-pt
          name: LAMBADA-PT
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ENEM Challenge (No Images)
          type: eduagarcia/enem_challenge
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 20.43
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BLUEX (No Images)
          type: eduagarcia-temp/BLUEX_without_images
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 22.81
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: OAB Exams
          type: eduagarcia/oab_exams
          split: train
          args:
            num_few_shot: 3
        metrics:
          - type: acc
            value: 24.83
            name: accuracy
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 RTE
          type: assin2
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 43.39
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Assin2 STS
          type: eduagarcia/portuguese_benchmark
          split: test
          args:
            num_few_shot: 10
        metrics:
          - type: pearson
            value: 6.31
            name: pearson
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: FaQuAD NLI
          type: ruanchaves/faquad-nli
          split: test
          args:
            num_few_shot: 15
        metrics:
          - type: f1_macro
            value: 43.97
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HateBR Binary
          type: ruanchaves/hatebr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 27.7
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: PT Hate Speech Binary
          type: hate_speech_portuguese
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 29.18
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: tweetSentBR
          type: eduagarcia-temp/tweetsentbr
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: f1_macro
            value: 43.11
            name: f1-macro
        source:
          url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard
          name: Open Portuguese LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: ARC-Challenge (PT)
          type: arc_pt
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 32.05
            name: normalized accuracy
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (PT)
          type: hellaswag_pt
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 48.28
            name: normalized accuracy
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (PT)
          type: truthfulqa_pt
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 38.44
            name: bleurt
        source:
          url: https://github.com/nlp-uoregon/mlmm-evaluation
          name: Evaluation Framework for Multilingual Large Language Models
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Alpaca-Eval (PT)
          type: alpaca_eval_pt
          args:
            num_few_shot: 0
        metrics:
          - type: lc_winrate
            value: 13
            name: length controlled winrate
        source:
          url: https://github.com/tatsu-lab/alpaca_eval
          name: AlpacaEval
base_model:
  - TucanoBR/Tucano-2b4

Tucano-2b4-Instruct

An illustration of a Tucano bird showing vibrant colors like yellow, orange, blue, green, and black.

Model Summary

Tucano-2b4-Instruct is a fine-tuned version of Tucano-2b4. Tucano is a series of decoder-transformers natively pretrained in Portuguese. All Tucano models were trained on GigaVerbo, a concatenation of deduplicated Portuguese text corpora amounting to 200 billion tokens.

The fine-tuning process was divided into two stages:

Read our preprint here.

Details

This repository has the source code used to train this model. The main libraries used are:

Intended Uses

The primary intended use of the Tucano models is to serve as foundations for research and development involving native Portuguese language modeling. Checkpoints saved during training are designed to provide a controlled setting for performing comparative experiments, specifically regarding the effects of active pretraining on the performance of currently available benchmarks. You may also fine-tune and adapt Tucano models for deployment if your use follows the Apache 2.0 license. If you decide to use the Tucano models as a basis for your fine-tuned model, please conduct your own risk and bias assessment.

Out-of-scope Use

  • Tucano models are not intended for deployment. They are not an out-of-the-box product and should not be used for human-facing interactions.

  • Tucano models are for the Portuguese language only and are unsuitable for text generation tasks in other languages.

  • Tucano models have not been fine-tuned for downstream tasks.

Basic usage

Using the pipeline:

from transformers import pipeline

generator = pipeline("text-generation", model="TucanoBR/Tucano-2b4-Instruct")

completions  = generator("<instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>", num_return_sequences=2, max_new_tokens=100)

for comp in completions:
  print(f"🤖 {comp['generated_text']}")

Using the AutoTokenizer and AutoModelForCausalLM:

from transformers import GenerationConfig, TextGenerationPipeline, AutoTokenizer, AutoModelForCausalLM
import torch

# Specify the model and tokenizer
model_id = "TucanoBR/Tucano-2b4-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Specify the generation parameters as you like
generation_config = GenerationConfig(
    **{
    "do_sample": True,
    "max_new_tokens": 2048,
    "renormalize_logits": True,
    "repetition_penalty": 1.2,
    "temperature": 0.3,
    "top_k": 30,
    "top_p": 0.3,
    "use_cache": True, 
  }
)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = TextGenerationPipeline(model=model, task="text-generation", tokenizer=tokenizer, device=device)

# Generate text
prompt = "<instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction>"
completion = generator(prompt, generation_config=generation_config)
print(completion[0]['generated_text'])

Limitations

Like almost all other language models trained on large text datasets scraped from the web, the Tucano models show behavior that does not make them an out-of-the-box solution to many real-world applications, especially those requiring factual, reliable, and nontoxic text generation. Tucano models are all subject to the following:

  • Hallucinations: Tucano models can produce content that can be mistaken as true facts, but are misleading or entirely false, i.e., hallucination.

  • Biases and Toxicity: Tucano models inherit the social and historical stereotypes from the data used to train them. Given these biases, the model can produce toxic content, i.e., harmful, offensive, or detrimental to individuals, groups, or communities.

  • Unreliable Code: Tucano models may produce incorrect code snippets and statements. These code generations should not be treated as suggestions or accurate solutions.

  • Language Limitations: Tucano models are primarily designed to interact with Portuguese. Other languages might challenge its comprehension, leading to potential misinterpretations or errors in response.

  • Repetition and Verbosity: Tucano models may get stuck on repetition loops (especially if the repetition penalty during generations is set to a meager value) or produce verbose responses unrelated to the prompt it was given.

Hence, even though our models are released with a permissive license, we urge users to perform their risk analysis on them if they intend to use them for real-world applications.

Evaluations

To evaluate the Instruct versions of our models, we used AlpacaEval 2.0 with length-controlled win rates, a fast and relatively cheap evaluation method that is highly correlated with human preferences and evaluations of pairwise comparisons. To learn more about our evaluation read our documentation.

Avg. Length Wins Base Wins Total Matches Length-Controlled Win Rate (%) LC Std. Error
Llama-3.2-3B-Instruct 1609 257 548 805 21.06 0.075
Tucano-2b4-Instruct 1843 151 654 805 13.00 0.071
Tucano-1b1-Instruct 1667 124 681 805 8.80 0.083
Llama-3.2-1B-Instruct 1429 99 706 805 7.15 0.057
TeenyTinyLlama-460m-Chat 1333 28 777 805 2.84 0.059
Sabiá-7b 5011 1 804 805 0.076 0.0043
Gervásio-7b 5740 1 804 805 0.026 0.0016

Cite as 🤗

@misc{correa2024tucanoadvancingneuraltext,
      title={{Tucano: Advancing Neural Text Generation for Portuguese}}, 
      author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza},
      year={2024},
      eprint={2411.07854},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.07854}, 
}

Aknowlegments

We gratefully acknowledge the granted access to the Marvin cluster hosted by University of Bonn along with the support provided by its High Performance Computing & Analytics Lab.

License

Tucano is licensed under the Apache License, Version 2.0. For more details, see the LICENSE file.