Tucano
Collection
Tucano is a series of decoder-transformers based on the Llama 2 architecture, natively pre-trained in Portuguese.
•
17 items
•
Updated
XGBRegressor-text-filter is a text-quality filter built on top of the xgboost
library. It uses the embeddings generated by sentence-transformers/LaBSE as a feature vector.
This repository has the source code used to train this model.
Here's an example of how to use the XGBRegressor-text-filter:
from transformers import AutoTokenizer, AutoModel
from xgboost import XGBRegressor
import torch.nn.functional as F
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/LaBSE")
embedding_model = AutoModel.from_pretrained("sentence-transformers/LaBSE")
device = ("cuda" if torch.cuda.is_available() else "cpu")
embedding_model.to(device)
bst_r = XGBRegressor({'device': device})
bst_r.load_model('/path/to/XGBRegressor-text-classifier.json')
def score_text(text, model):
encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = embedding_model(**encoded_input)
sentence_embedding = mean_pooling(model_output, encoded_input['attention_mask'])
embedding = F.normalize(sentence_embedding, p=2, dim=1).numpy()
score = model.predict(embedding)[0]
return score
score_text("Os tucanos são aves que correspondem à família Ramphastidae, vivem nas florestas tropicais da América Central e América do Sul. A família inclui cinco gêneros e mais de quarenta espécies diferentes. Possuem bicos notavelmente grandes e coloridos, que possuem a função de termorregulação para as muitas espécies que passam muito tempo na copa da floresta exposta ao sol tropical quente.", bst_r)
@misc{correa2024tucanoadvancingneuraltext,
title={{Tucano: Advancing Neural Text Generation for Portuguese}},
author={Corr{\^e}a, Nicholas Kluge and Sen, Aniket and Falk, Sophia and Fatimah, Shiza},
year={2024},
eprint={2411.07854},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.07854},
}
We gratefully acknowledge the granted access to the Marvin cluster hosted by University of Bonn along with the support provided by its High Performance Computing & Analytics Lab.
XGBRegressor-text-filter is licensed under the Apache License, Version 2.0. For more details, see the LICENSE file.