Edit model card

gemma-2-9b-lr7.5e-05e1r256dr0

This model is a fine-tuned version of google/gemma-2-9b on the ss-train dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine_with_min_lr
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
3
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Tung177/gemma-2-9b-4bit-vi-sentence-simplification-adapter

Base model

google/gemma-2-9b
Adapter
(22)
this model