tuning-sentiment-5cdviso

This model is a fine-tuned version of 5CD-AI/Vietnamese-Sentiment-visobert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1095
  • Accuracy: 0.9778
  • F1: 0.9780
  • Precision: 0.9780
  • Recall: 0.9781

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5372 0.2457 100 0.3840 0.8572 0.8542 0.8716 0.8510
0.3776 0.4914 200 0.2550 0.9058 0.9069 0.9066 0.9075
0.3333 0.7371 300 0.2245 0.9169 0.9181 0.9184 0.9196
0.3303 0.9828 400 0.1704 0.9471 0.9475 0.9483 0.9468
0.2117 1.2285 500 0.1635 0.9458 0.9464 0.9459 0.9471
0.2127 1.4742 600 0.1304 0.9538 0.9539 0.9550 0.9531
0.2021 1.7199 700 0.1385 0.9631 0.9634 0.9627 0.9647
0.2121 1.9656 800 0.1095 0.9655 0.9659 0.9651 0.9673
0.1499 2.2113 900 0.1195 0.9705 0.9708 0.9699 0.9723
0.1323 2.4570 1000 0.1101 0.976 0.9762 0.9757 0.9768
0.1566 2.7027 1100 0.1125 0.9772 0.9774 0.9776 0.9772
0.144 2.9484 1200 0.1097 0.9778 0.9780 0.9781 0.9780

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
97.6M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for TungCan/tuning-sentiment-5cdviso

Finetuned
(7)
this model