Whisper openai-whisper-large-v3

This model is a fine-tuned version of openai/whisper-large-v3 on the llamadas ecu911 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7087
  • Wer: 44.4219

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.8627 1.0 72 0.6537 54.2258
0.4133 2.0 144 0.5968 66.1934
0.2131 3.0 216 0.5635 73.5632
0.1184 4.0 288 0.6221 45.9770
0.067 5.0 360 0.6224 44.5571
0.0452 6.0 432 0.6335 50.5747
0.0333 7.0 504 0.6728 44.3543
0.0308 8.0 576 0.7232 44.7600
0.0244 9.0 648 0.7012 43.4753
0.0207 10.0 720 0.7087 44.4219

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
4
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for UDA-LIDI/openai-whisper-large-v3-fullFT-es_ecu911_V2martin_win30s15s_samples

Finetuned
(395)
this model