|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dense |
|
base_model: FremyCompany/BioLORD-2023-M-Dutch-InContext-v1 |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on FremyCompany/BioLORD-2023-M-Dutch-InContext-v1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) from, simply the [FremyCompany/BioLORD-2023-M-Dutch-InContext-v1](https://huggingface.co/FremyCompany/BioLORD-2023-M-Dutch-InContext-v1) model but with bf16 instead of float32. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [FremyCompany/BioLORD-2023-M-Dutch-InContext-v1](https://huggingface.co/FremyCompany/BioLORD-2023-M-Dutch-InContext-v1) <!-- at revision 4db8f4e39952f0515ab9fd3f036a05b5db8892fd --> |
|
- **Maximum Sequence Length:** 25 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 25, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'}) |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'The weather is lovely today.', |
|
"It's so sunny outside!", |
|
'He drove to the stadium.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities) |
|
# tensor([[1.0000, 0.6914, 0.4062], |
|
# [0.6914, 1.0000, 0.3145], |
|
# [0.4062, 0.3145, 1.0000]], dtype=torch.bfloat16) |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Framework Versions |
|
- Python: 3.12.3 |
|
- Sentence Transformers: 5.0.0 |
|
- Transformers: 4.48.0 |
|
- PyTorch: 2.5.0+cu121 |
|
- Accelerate: 1.8.1 |
|
- Datasets: 3.6.0 |
|
- Tokenizers: 0.21.2 |
|
|
|
## Citation |
|
This model accompanies the [BioLORD-2023: Learning Ontological Representations from Definitions](https://arxiv.org/abs/2311.16075) paper. When you use this model, please cite the original paper as follows: |
|
|
|
```latex |
|
@article{remy-etal-2023-biolord, |
|
author = {Remy, François and Demuynck, Kris and Demeester, Thomas}, |
|
title = "{BioLORD-2023: semantic textual representations fusing large language models and clinical knowledge graph insights}", |
|
journal = {Journal of the American Medical Informatics Association}, |
|
pages = {ocae029}, |
|
year = {2024}, |
|
month = {02}, |
|
issn = {1527-974X}, |
|
doi = {10.1093/jamia/ocae029}, |
|
url = {https://doi.org/10.1093/jamia/ocae029}, |
|
eprint = {https://academic.oup.com/jamia/advance-article-pdf/doi/10.1093/jamia/ocae029/56772025/ocae029.pdf}, |
|
} |
|
``` |
|
|
|
### BibTeX |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |