Delete configuration_intern_vit copy.py

#1
by sy1998 - opened
Files changed (1) hide show
  1. configuration_intern_vit copy.py +0 -120
configuration_intern_vit copy.py DELETED
@@ -1,120 +0,0 @@
1
- # --------------------------------------------------------
2
- # InternVL
3
- # Copyright (c) 2024 OpenGVLab
4
- # Licensed under The MIT License [see LICENSE for details]
5
- # --------------------------------------------------------
6
-
7
- import os
8
- from typing import Union
9
-
10
- from transformers.configuration_utils import PretrainedConfig
11
- from transformers.utils import logging
12
-
13
- logger = logging.get_logger(__name__)
14
-
15
-
16
- class InternVisionConfig(PretrainedConfig):
17
- r"""
18
- This is the configuration class to store the configuration of a [`InternVisionModel`]. It is used to
19
- instantiate a vision encoder according to the specified arguments, defining the model architecture.
20
-
21
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
22
- documentation from [`PretrainedConfig`] for more information.
23
-
24
- Args:
25
- num_channels (`int`, *optional*, defaults to 3):
26
- Number of color channels in the input images (e.g., 3 for RGB).
27
- patch_size (`int`, *optional*, defaults to 14):
28
- The size (resolution) of each patch.
29
- image_size (`int`, *optional*, defaults to 224):
30
- The size (resolution) of each image.
31
- qkv_bias (`bool`, *optional*, defaults to `False`):
32
- Whether to add a bias to the queries and values in the self-attention layers.
33
- hidden_size (`int`, *optional*, defaults to 3200):
34
- Dimensionality of the encoder layers and the pooler layer.
35
- num_attention_heads (`int`, *optional*, defaults to 25):
36
- Number of attention heads for each attention layer in the Transformer encoder.
37
- intermediate_size (`int`, *optional*, defaults to 12800):
38
- Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
39
- qk_normalization (`bool`, *optional*, defaults to `True`):
40
- Whether to normalize the queries and keys in the self-attention layers.
41
- num_hidden_layers (`int`, *optional*, defaults to 48):
42
- Number of hidden layers in the Transformer encoder.
43
- use_flash_attn (`bool`, *optional*, defaults to `True`):
44
- Whether to use flash attention mechanism.
45
- hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
46
- The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
47
- `"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
48
- layer_norm_eps (`float`, *optional*, defaults to 1e-6):
49
- The epsilon used by the layer normalization layers.
50
- dropout (`float`, *optional*, defaults to 0.0):
51
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
52
- drop_path_rate (`float`, *optional*, defaults to 0.0):
53
- Dropout rate for stochastic depth.
54
- attention_dropout (`float`, *optional*, defaults to 0.0):
55
- The dropout ratio for the attention probabilities.
56
- initializer_range (`float`, *optional*, defaults to 0.02):
57
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
58
- initializer_factor (`float`, *optional*, defaults to 0.1):
59
- A factor for layer scale.
60
- """
61
-
62
- model_type = 'intern_vit_6b'
63
-
64
- def __init__(
65
- self,
66
- num_channels=3,
67
- patch_size=14,
68
- image_size=224,
69
- qkv_bias=False,
70
- hidden_size=3200,
71
- num_attention_heads=25,
72
- intermediate_size=12800,
73
- qk_normalization=True,
74
- num_hidden_layers=48,
75
- use_flash_attn=True,
76
- hidden_act='gelu',
77
- norm_type='rms_norm',
78
- layer_norm_eps=1e-6,
79
- dropout=0.0,
80
- drop_path_rate=0.0,
81
- attention_dropout=0.0,
82
- initializer_range=0.02,
83
- initializer_factor=0.1,
84
- **kwargs,
85
- ):
86
- super().__init__(**kwargs)
87
-
88
- self.hidden_size = hidden_size
89
- self.intermediate_size = intermediate_size
90
- self.dropout = dropout
91
- self.drop_path_rate = drop_path_rate
92
- self.num_hidden_layers = num_hidden_layers
93
- self.num_attention_heads = num_attention_heads
94
- self.num_channels = num_channels
95
- self.patch_size = patch_size
96
- self.image_size = image_size
97
- self.initializer_range = initializer_range
98
- self.initializer_factor = initializer_factor
99
- self.attention_dropout = attention_dropout
100
- self.layer_norm_eps = layer_norm_eps
101
- self.hidden_act = hidden_act
102
- self.norm_type = norm_type
103
- self.qkv_bias = qkv_bias
104
- self.qk_normalization = qk_normalization
105
- self.use_flash_attn = use_flash_attn
106
-
107
- @classmethod
108
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
109
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
110
-
111
- if 'vision_config' in config_dict:
112
- config_dict = config_dict['vision_config']
113
-
114
- if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
115
- logger.warning(
116
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
117
- f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
118
- )
119
-
120
- return cls.from_dict(config_dict, **kwargs)