Qwen2.5-7B Finetuned on Argus Dataset

This model is a finetuned version of Qwen2.5-7B using LoRA with rank 128.

Training Details

  • Base Model: Qwen/Qwen2.5-7B
  • Training Method: LoRA (rank=128, alpha=256)
  • Dataset: 27,997 text samples
  • Epochs: 2 (best checkpoint from epoch 1)
  • Batch Size: 16 (effective)
  • Learning Rate: 5e-5
  • Hardware: A100 GPU

Training Results

  • Epoch 1: Training Loss: 1.301, Validation Loss: 1.589 (best)
  • Epoch 2: Training Loss: 1.699, Validation Loss: 1.826

Available Formats

  • PyTorch: Original model weights
  • GGUF: Multiple quantization levels available
    • Q8_0: Highest quality (7.5GB)
    • Q6_K: Very high quality (5.5GB)
    • Q5_K_M: High quality (4.8GB)
    • Q4_K_M: Good quality (3.8GB)
    • Q4_0: Acceptable quality (3.5GB)

Usage

With Transformers

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("UdayGattu23/qwen2.5-7b-finetuned-argus")
tokenizer = AutoTokenizer.from_pretrained("UdayGattu23/qwen2.5-7b-finetuned-argus")

With llama.cpp (GGUF)

./main -m qwen2.5-7b-finetuned-Q4_K_M.gguf -p "Your prompt here"

License

Apache 2.0

Downloads last month
434
Safetensors
Model size
7.62B params
Tensor type
F16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for UdayGattu23/qwen2.5-7b-finetuned-argus

Base model

Qwen/Qwen2.5-7B
Quantized
(80)
this model