Qwen2.5-7B Finetuned on Argus Dataset
This model is a finetuned version of Qwen2.5-7B using LoRA with rank 128.
Training Details
- Base Model: Qwen/Qwen2.5-7B
- Training Method: LoRA (rank=128, alpha=256)
- Dataset: 27,997 text samples
- Epochs: 2 (best checkpoint from epoch 1)
- Batch Size: 16 (effective)
- Learning Rate: 5e-5
- Hardware: A100 GPU
Training Results
- Epoch 1: Training Loss: 1.301, Validation Loss: 1.589 (best)
- Epoch 2: Training Loss: 1.699, Validation Loss: 1.826
Available Formats
- PyTorch: Original model weights
- GGUF: Multiple quantization levels available
- Q8_0: Highest quality (7.5GB)
- Q6_K: Very high quality (5.5GB)
- Q5_K_M: High quality (4.8GB)
- Q4_K_M: Good quality (3.8GB)
- Q4_0: Acceptable quality (3.5GB)
Usage
With Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("UdayGattu23/qwen2.5-7b-finetuned-argus")
tokenizer = AutoTokenizer.from_pretrained("UdayGattu23/qwen2.5-7b-finetuned-argus")
With llama.cpp (GGUF)
./main -m qwen2.5-7b-finetuned-Q4_K_M.gguf -p "Your prompt here"
License
Apache 2.0
- Downloads last month
- 434
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for UdayGattu23/qwen2.5-7b-finetuned-argus
Base model
Qwen/Qwen2.5-7B