See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: EleutherAI/pythia-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 2d626c804ac807b3_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/2d626c804ac807b3_train_data.json
type:
field_instruction: instruction
field_output: output_1
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: null
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/2d626c804ac807b3_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 3f7fae45-8e9e-4c49-9035-f4c04b728391
wandb_project: Gradients-On-Three
wandb_run: your_name
wandb_runid: 3f7fae45-8e9e-4c49-9035-f4c04b728391
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
f1d7c2d3-2dd0-4d57-bb03-dc09bce68f9c
This model is a fine-tuned version of EleutherAI/pythia-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.6192
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0020 | 1 | 2.7500 |
10.8945 | 0.0184 | 9 | 2.7422 |
10.9398 | 0.0367 | 18 | 2.6784 |
10.3486 | 0.0551 | 27 | 2.6385 |
10.5315 | 0.0734 | 36 | 2.6370 |
10.891 | 0.0918 | 45 | 2.6252 |
10.4947 | 0.1101 | 54 | 2.6267 |
10.219 | 0.1285 | 63 | 2.6237 |
10.473 | 0.1469 | 72 | 2.6210 |
10.4252 | 0.1652 | 81 | 2.6180 |
10.736 | 0.1836 | 90 | 2.6191 |
10.4505 | 0.2019 | 99 | 2.6192 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 12
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for VERSIL91/cc1f4992-98c4-4ac9-9b42-9aa3504fd6a8
Base model
EleutherAI/pythia-160m