Whisper Large Ro - VM3
This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2002
- Wer: 13.6187
- Cer: 5.2529
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- training_steps: 8000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.1553 | 0.6031 | 1000 | 0.2150 | 18.6389 | 7.9857 |
0.0962 | 1.2063 | 2000 | 0.2028 | 17.7711 | 6.7850 |
0.0984 | 1.8094 | 3000 | 0.1927 | 15.0127 | 5.8714 |
0.0594 | 2.4125 | 4000 | 0.1942 | 14.1240 | 5.3363 |
0.0387 | 3.0157 | 5000 | 0.1937 | 12.9822 | 4.6948 |
0.0375 | 3.6188 | 6000 | 0.1976 | 13.5857 | 5.0185 |
0.0292 | 4.2220 | 7000 | 0.1997 | 13.5109 | 5.2041 |
0.03 | 4.8251 | 8000 | 0.2002 | 13.6187 | 5.2529 |
Framework versions
- Transformers 4.50.1
- Pytorch 2.6.0+cu124
- Datasets 2.19.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for VMadalina/whisper-medium-news-augmented2
Base model
openai/whisper-medium