Whisper Large Ro - VM3

This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2002
  • Wer: 13.6187
  • Cer: 5.2529

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 300
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
0.1553 0.6031 1000 0.2150 18.6389 7.9857
0.0962 1.2063 2000 0.2028 17.7711 6.7850
0.0984 1.8094 3000 0.1927 15.0127 5.8714
0.0594 2.4125 4000 0.1942 14.1240 5.3363
0.0387 3.0157 5000 0.1937 12.9822 4.6948
0.0375 3.6188 6000 0.1976 13.5857 5.0185
0.0292 4.2220 7000 0.1997 13.5109 5.2041
0.03 4.8251 8000 0.2002 13.6187 5.2529

Framework versions

  • Transformers 4.50.1
  • Pytorch 2.6.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
242M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for VMadalina/whisper-medium-news-augmented2

Finetuned
(697)
this model