metadata
library_name: transformers
tags:
- autotrain
- question-answering
base_model: deepset/roberta-base-squad2
widget:
- text: Who loves AutoTrain?
context: Everyone loves AutoTrain
datasets:
- VOKulus/test
Model Trained Using AutoTrain
- Problem type: Extractive Question Answering
Validation Metrics
loss: 6.235438195290044e-05
exact_match: 99.7703
f1: 99.8851
runtime: 18.3183
samples_per_second: 77.627
steps_per_second: 9.717
: 2.0
Usage
import torch
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
model = AutoModelForQuestionAnswering.from_pretrained(...)
tokenizer = AutoTokenizer.from_pretrained(...)
from transformers import BertTokenizer, BertForQuestionAnswering
question, text = "Who loves AutoTrain?", "Everyone loves AutoTrain"
inputs = tokenizer(question, text, return_tensors='pt')
start_positions = torch.tensor([1])
end_positions = torch.tensor([3])
outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions)
loss = outputs.loss
start_scores = outputs.start_logits
end_scores = outputs.end_logits