|
--- |
|
language: |
|
- en |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- cobalt |
|
- cobalt-2 |
|
- valiant |
|
- valiant-labs |
|
- qwen |
|
- qwen-3 |
|
- qwen-3-14b |
|
- 14b |
|
- math |
|
- math-reasoning |
|
- math-instruct |
|
- reasoning |
|
- problem-solving |
|
- creative |
|
- analytical |
|
- expert |
|
- rationality |
|
- conversational |
|
- chat |
|
- instruct |
|
base_model: Qwen/Qwen3-14B |
|
datasets: |
|
- zwhe99/DeepMath-103K |
|
- sequelbox/Raiden-DeepSeek-R1 |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
**[Support our open-source dataset and model releases!](https://huggingface.co/spaces/sequelbox/SupportOpenSource)** |
|
|
|
|
|
Cobalt 2 is a math and general reasoning specialist built on Qwen 3. |
|
- Finetuned on high-difficulty problems from [the math-reasoning DeepMath dataset](https://huggingface.co/datasets/zwhe99/DeepMath-103K) generated with Deepseek R1! |
|
- Improved [general and creative reasoning](https://huggingface.co/datasets/sequelbox/Raiden-DeepSeek-R1) to supplement problem-solving and general chat performance. |
|
- Small model sizes allow running on local desktop and mobile, plus super-fast server inference! |
|
|
|
|
|
Try Esper 3, our full-stack code, architecture, and DevOps assistant: [Qwen3-4B](https://huggingface.co/ValiantLabs/Qwen3-4B-Esper3), [Qwen3-8B](https://huggingface.co/ValiantLabs/Qwen3-8B-Esper3), [Qwen3-14B](https://huggingface.co/ValiantLabs/Qwen3-14B-Esper3) |
|
|
|
|
|
## Prompting Guide |
|
Cobalt 2 uses the [Qwen 3](https://huggingface.co/Qwen/Qwen3-14B) prompt format. |
|
|
|
Cobalt 2 is a reasoning finetune; **we recommend enable_thinking=True for all chats.** |
|
|
|
Example inference script to get started: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "ValiantLabs/Qwen3-14B-Cobalt2" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "Evaluate the limit using the Central Limit Theorem: \[ \lim_{n\to\infty}p^{n}\sum_{k \geqslant{n(p^{-1}-1)}}^{\infty}\binom{n+k-1}{n-1}(1-p)^{k}. \]" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
|
|
 |
|
|
|
|
|
Cobalt 2 is created by [Valiant Labs.](http://valiantlabs.ca/) |
|
|
|
[Check out our HuggingFace page to see Esper 3 and all of our models!](https://huggingface.co/ValiantLabs) |
|
|
|
We care about open source. For everyone to use. |
|
|
|
|