|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.checkpoint import checkpoint |
|
import warnings |
|
import numpy as np |
|
|
|
|
|
def xavier_init(module: nn.Module, |
|
gain: float = 1, |
|
bias: float = 0, |
|
distribution: str = 'normal') -> None: |
|
assert distribution in ['uniform', 'normal'] |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
if distribution == 'uniform': |
|
nn.init.xavier_uniform_(module.weight, gain=gain) |
|
else: |
|
nn.init.xavier_normal_(module.weight, gain=gain) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
def carafe(x, normed_mask, kernel_size, group=1, up=1): |
|
b, c, h, w = x.shape |
|
_, m_c, m_h, m_w = normed_mask.shape |
|
assert m_h == up * h |
|
assert m_w == up * w |
|
pad = kernel_size // 2 |
|
pad_x = F.pad(x, pad=[pad] * 4, mode='reflect') |
|
unfold_x = F.unfold(pad_x, kernel_size=(kernel_size, kernel_size), stride=1, padding=0) |
|
unfold_x = unfold_x.reshape(b, c * kernel_size * kernel_size, h, w) |
|
unfold_x = F.interpolate(unfold_x, scale_factor=up, mode='nearest') |
|
unfold_x = unfold_x.reshape(b, c, kernel_size * kernel_size, m_h, m_w) |
|
normed_mask = normed_mask.reshape(b, 1, kernel_size * kernel_size, m_h, m_w) |
|
res = unfold_x * normed_mask |
|
res = res.sum(dim=2).reshape(b, c, m_h, m_w) |
|
return res |
|
|
|
def normal_init(module, mean=0, std=1, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.normal_(module.weight, mean, std) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
|
|
def constant_init(module, val, bias=0): |
|
if hasattr(module, 'weight') and module.weight is not None: |
|
nn.init.constant_(module.weight, val) |
|
if hasattr(module, 'bias') and module.bias is not None: |
|
nn.init.constant_(module.bias, bias) |
|
|
|
def resize(input, |
|
size=None, |
|
scale_factor=None, |
|
mode='nearest', |
|
align_corners=None, |
|
warning=True): |
|
if warning: |
|
if size is not None and align_corners: |
|
input_h, input_w = tuple(int(x) for x in input.shape[2:]) |
|
output_h, output_w = tuple(int(x) for x in size) |
|
if output_h > input_h or output_w > input_w: |
|
if ((output_h > 1 and output_w > 1 and input_h > 1 |
|
and input_w > 1) and (output_h - 1) % (input_h - 1) |
|
and (output_w - 1) % (input_w - 1)): |
|
warnings.warn( |
|
f'When align_corners={align_corners}, ' |
|
'the output would more aligned if ' |
|
f'input size {(input_h, input_w)} is `x+1` and ' |
|
f'out size {(output_h, output_w)} is `nx+1`') |
|
return F.interpolate(input, size, scale_factor, mode, align_corners) |
|
|
|
def hamming2D(M, N): |
|
hamming_x = np.hamming(M) |
|
hamming_y = np.hamming(N) |
|
hamming_2d = np.outer(hamming_x, hamming_y) |
|
return hamming_2d |
|
|
|
class DesneFusion(nn.Module): |
|
def __init__(self, |
|
hr_channels, |
|
lr_channels, |
|
scale_factor=1, |
|
lowpass_kernel=5, |
|
highpass_kernel=3, |
|
up_group=1, |
|
encoder_kernel=3, |
|
encoder_dilation=1, |
|
compressed_channels=64, |
|
align_corners=False, |
|
upsample_mode='nearest', |
|
feature_resample=False, |
|
feature_resample_group=4, |
|
comp_feat_upsample=True, |
|
use_high_pass=True, |
|
use_low_pass=True, |
|
hr_residual=True, |
|
semi_conv=True, |
|
hamming_window=True, |
|
feature_resample_norm=True, |
|
**kwargs): |
|
super().__init__() |
|
self.scale_factor = scale_factor |
|
self.lowpass_kernel = lowpass_kernel |
|
self.highpass_kernel = highpass_kernel |
|
self.up_group = up_group |
|
self.encoder_kernel = encoder_kernel |
|
self.encoder_dilation = encoder_dilation |
|
self.compressed_channels = compressed_channels |
|
self.hr_channel_compressor = nn.Conv2d(hr_channels, self.compressed_channels,1) |
|
self.lr_channel_compressor = nn.Conv2d(lr_channels, self.compressed_channels,1) |
|
self.content_encoder = nn.Conv2d( |
|
self.compressed_channels, |
|
lowpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor, |
|
self.encoder_kernel, |
|
padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), |
|
dilation=self.encoder_dilation, |
|
groups=1) |
|
|
|
self.align_corners = align_corners |
|
self.upsample_mode = upsample_mode |
|
self.hr_residual = hr_residual |
|
self.use_high_pass = use_high_pass |
|
self.use_low_pass = use_low_pass |
|
self.semi_conv = semi_conv |
|
self.feature_resample = feature_resample |
|
self.comp_feat_upsample = comp_feat_upsample |
|
if self.feature_resample: |
|
self.dysampler = LocalSimGuidedSampler(in_channels=compressed_channels, scale=2, style='lp', groups=feature_resample_group, use_direct_scale=True, kernel_size=encoder_kernel, norm=feature_resample_norm) |
|
if self.use_high_pass: |
|
self.content_encoder2 = nn.Conv2d( |
|
self.compressed_channels, |
|
highpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor, |
|
self.encoder_kernel, |
|
padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2), |
|
dilation=self.encoder_dilation, |
|
groups=1) |
|
self.hamming_window = hamming_window |
|
lowpass_pad=0 |
|
highpass_pad=0 |
|
if self.hamming_window: |
|
self.register_buffer('hamming_lowpass', torch.FloatTensor(hamming2D(lowpass_kernel + 2 * lowpass_pad, lowpass_kernel + 2 * lowpass_pad))[None, None,]) |
|
self.register_buffer('hamming_highpass', torch.FloatTensor(hamming2D(highpass_kernel + 2 * highpass_pad, highpass_kernel + 2 * highpass_pad))[None, None,]) |
|
else: |
|
self.register_buffer('hamming_lowpass', torch.FloatTensor([1.0])) |
|
self.register_buffer('hamming_highpass', torch.FloatTensor([1.0])) |
|
self.init_weights() |
|
self.intermediate_results = {} |
|
|
|
|
|
def init_weights(self): |
|
for m in self.modules(): |
|
|
|
if isinstance(m, nn.Conv2d): |
|
xavier_init(m, distribution='uniform') |
|
normal_init(self.content_encoder, std=0.001) |
|
if self.use_high_pass: |
|
normal_init(self.content_encoder2, std=0.001) |
|
|
|
def kernel_normalizer(self, mask, kernel, scale_factor=None, hamming=1): |
|
if scale_factor is not None: |
|
mask = F.pixel_shuffle(mask, self.scale_factor) |
|
n, mask_c, h, w = mask.size() |
|
mask_channel = int(mask_c / float(kernel**2)) |
|
|
|
|
|
|
|
|
|
mask = mask.view(n, mask_channel, -1, h, w) |
|
mask = F.softmax(mask, dim=2, dtype=mask.dtype) |
|
mask = mask.view(n, mask_channel, kernel, kernel, h, w) |
|
mask = mask.permute(0, 1, 4, 5, 2, 3).view(n, -1, kernel, kernel) |
|
|
|
mask = mask * hamming |
|
mask /= mask.sum(dim=(-1, -2), keepdims=True) |
|
|
|
|
|
mask = mask.view(n, mask_channel, h, w, -1) |
|
mask = mask.permute(0, 1, 4, 2, 3).view(n, -1, h, w).contiguous() |
|
return mask |
|
|
|
def forward(self, hr_feat, lr_feat, use_checkpoint=False): |
|
if use_checkpoint: |
|
return checkpoint(self._forward, hr_feat, lr_feat) |
|
else: |
|
return self._forward(hr_feat, lr_feat) |
|
|
|
def _forward(self, hr_feat, lr_feat): |
|
|
|
|
|
|
|
self.intermediate_results.clear() |
|
|
|
|
|
self.intermediate_results['hr_feat_before'] = hr_feat.clone() |
|
self.intermediate_results['lr_feat_before'] = lr_feat.clone() |
|
|
|
compressed_hr_feat = self.hr_channel_compressor(hr_feat) |
|
compressed_lr_feat = self.lr_channel_compressor(lr_feat) |
|
if self.semi_conv: |
|
if self.comp_feat_upsample: |
|
if self.use_high_pass: |
|
mask_hr_hr_feat = self.content_encoder2(compressed_hr_feat) |
|
mask_hr_init = self.kernel_normalizer(mask_hr_hr_feat, self.highpass_kernel, hamming=self.hamming_highpass) |
|
compressed_hr_feat = compressed_hr_feat + compressed_hr_feat - carafe(compressed_hr_feat, mask_hr_init, self.highpass_kernel, self.up_group, 1) |
|
|
|
mask_lr_hr_feat = self.content_encoder(compressed_hr_feat) |
|
mask_lr_init = self.kernel_normalizer(mask_lr_hr_feat, self.lowpass_kernel, hamming=self.hamming_lowpass) |
|
|
|
mask_lr_lr_feat_lr = self.content_encoder(compressed_lr_feat) |
|
mask_lr_lr_feat = F.interpolate( |
|
carafe(mask_lr_lr_feat_lr, mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest') |
|
mask_lr = mask_lr_hr_feat + mask_lr_lr_feat |
|
|
|
mask_lr_init = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass) |
|
mask_hr_lr_feat = F.interpolate( |
|
carafe(self.content_encoder2(compressed_lr_feat), mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest') |
|
mask_hr = mask_hr_hr_feat + mask_hr_lr_feat |
|
else: raise NotImplementedError |
|
else: |
|
mask_lr = self.content_encoder(compressed_hr_feat) + F.interpolate(self.content_encoder(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest') |
|
if self.use_high_pass: |
|
mask_hr = self.content_encoder2(compressed_hr_feat) + F.interpolate(self.content_encoder2(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest') |
|
else: |
|
compressed_x = F.interpolate(compressed_lr_feat, size=compressed_hr_feat.shape[-2:], mode='nearest') + compressed_hr_feat |
|
mask_lr = self.content_encoder(compressed_x) |
|
if self.use_high_pass: |
|
mask_hr = self.content_encoder2(compressed_x) |
|
|
|
mask_lr = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass) |
|
|
|
|
|
lr_feat_after = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2) |
|
self.intermediate_results['lr_feat_after'] = lr_feat_after.clone() |
|
|
|
if self.semi_conv: |
|
lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2) |
|
else: |
|
lr_feat = resize( |
|
input=lr_feat, |
|
size=hr_feat.shape[2:], |
|
mode=self.upsample_mode, |
|
align_corners=None if self.upsample_mode == 'nearest' else self.align_corners) |
|
lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 1) |
|
|
|
if self.use_high_pass: |
|
mask_hr = self.kernel_normalizer(mask_hr, self.highpass_kernel, hamming=self.hamming_highpass) |
|
hr_feat_hf = hr_feat - carafe(hr_feat, mask_hr, self.highpass_kernel, self.up_group, 1) |
|
self.intermediate_results['hr_feat_hf_component'] = hr_feat_hf.clone() |
|
if self.hr_residual: |
|
|
|
hr_feat = hr_feat_hf + hr_feat |
|
else: |
|
hr_feat = hr_feat_hf |
|
self.intermediate_results['hr_feat_after'] = hr_feat.clone() |
|
else: |
|
|
|
final_hr_feat = hr_feat |
|
self.intermediate_results['hr_feat_hf_component'] = torch.zeros_like(final_hr_feat) |
|
self.intermediate_results['hr_feat_after'] = final_hr_feat.clone() |
|
|
|
|
|
if self.feature_resample: |
|
|
|
lr_feat = self.dysampler(hr_x=compressed_hr_feat, |
|
lr_x=compressed_lr_feat, feat2sample=lr_feat) |
|
self.intermediate_results['lr_feat_after'] = lr_feat.clone() |
|
|
|
return mask_lr, hr_feat, lr_feat |
|
|
|
|
|
|
|
class LocalSimGuidedSampler(nn.Module): |
|
""" |
|
offset generator in DesneFusion |
|
""" |
|
def __init__(self, in_channels, scale=2, style='lp', groups=4, use_direct_scale=True, kernel_size=1, local_window=3, sim_type='cos', norm=True, direction_feat='sim_concat'): |
|
super().__init__() |
|
assert scale==2 |
|
assert style=='lp' |
|
|
|
self.scale = scale |
|
self.style = style |
|
self.groups = groups |
|
self.local_window = local_window |
|
self.sim_type = sim_type |
|
self.direction_feat = direction_feat |
|
|
|
if style == 'pl': |
|
assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0 |
|
assert in_channels >= groups and in_channels % groups == 0 |
|
|
|
if style == 'pl': |
|
in_channels = in_channels // scale ** 2 |
|
out_channels = 2 * groups |
|
else: |
|
out_channels = 2 * groups * scale ** 2 |
|
if self.direction_feat == 'sim': |
|
self.offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
elif self.direction_feat == 'sim_concat': |
|
self.offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
else: raise NotImplementedError |
|
normal_init(self.offset, std=0.001) |
|
if use_direct_scale: |
|
if self.direction_feat == 'sim': |
|
self.direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
elif self.direction_feat == 'sim_concat': |
|
self.direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
else: raise NotImplementedError |
|
constant_init(self.direct_scale, val=0.) |
|
|
|
out_channels = 2 * groups |
|
if self.direction_feat == 'sim': |
|
self.hr_offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
elif self.direction_feat == 'sim_concat': |
|
self.hr_offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
else: raise NotImplementedError |
|
normal_init(self.hr_offset, std=0.001) |
|
|
|
if use_direct_scale: |
|
if self.direction_feat == 'sim': |
|
self.hr_direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
elif self.direction_feat == 'sim_concat': |
|
self.hr_direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2) |
|
else: raise NotImplementedError |
|
constant_init(self.hr_direct_scale, val=0.) |
|
|
|
self.norm = norm |
|
if self.norm: |
|
self.norm_hr = nn.GroupNorm(in_channels // 8, in_channels) |
|
self.norm_lr = nn.GroupNorm(in_channels // 8, in_channels) |
|
else: |
|
self.norm_hr = nn.Identity() |
|
self.norm_lr = nn.Identity() |
|
self.register_buffer('init_pos', self._init_pos()) |
|
|
|
def _init_pos(self): |
|
h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scale |
|
return torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1) |
|
|
|
def sample(self, x, offset, scale=None): |
|
if scale is None: scale = self.scale |
|
B, _, H, W = offset.shape |
|
offset = offset.view(B, 2, -1, H, W) |
|
coords_h = torch.arange(H) + 0.5 |
|
coords_w = torch.arange(W) + 0.5 |
|
coords = torch.stack(torch.meshgrid([coords_w, coords_h]) |
|
).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device) |
|
normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1) |
|
coords = 2 * (coords + offset) / normalizer - 1 |
|
coords = F.pixel_shuffle(coords.view(B, -1, H, W), scale).view( |
|
B, 2, -1, scale * H, scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1) |
|
return F.grid_sample(x.reshape(B * self.groups, -1, x.size(-2), x.size(-1)), coords, mode='bilinear', |
|
align_corners=False, padding_mode="border").view(B, -1, scale * H, scale * W) |
|
|
|
def forward(self, hr_x, lr_x, feat2sample): |
|
hr_x = self.norm_hr(hr_x) |
|
lr_x = self.norm_lr(lr_x) |
|
|
|
if self.direction_feat == 'sim': |
|
hr_sim = compute_similarity(hr_x, self.local_window, dilation=2, sim='cos') |
|
lr_sim = compute_similarity(lr_x, self.local_window, dilation=2, sim='cos') |
|
elif self.direction_feat == 'sim_concat': |
|
hr_sim = torch.cat([hr_x, compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')], dim=1) |
|
lr_sim = torch.cat([lr_x, compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')], dim=1) |
|
hr_x, lr_x = hr_sim, lr_sim |
|
|
|
offset = self.get_offset_lp(hr_x, lr_x, hr_sim, lr_sim) |
|
return self.sample(feat2sample, offset) |
|
|
|
|
|
def get_offset_lp(self, hr_x, lr_x, hr_sim, lr_sim): |
|
if hasattr(self, 'direct_scale'): |
|
|
|
offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos |
|
|
|
else: |
|
offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * 0.25 + self.init_pos |
|
return offset |
|
|
|
def get_offset(self, hr_x, lr_x): |
|
if self.style == 'pl': |
|
raise NotImplementedError |
|
return self.get_offset_lp(hr_x, lr_x) |
|
|
|
|
|
def compute_similarity(input_tensor, k=3, dilation=1, sim='cos'): |
|
""" |
|
计算输入张量中每一点与周围KxK范围内的点的余弦相似度。 |
|
|
|
参数: |
|
- input_tensor: 输入张量,形状为[B, C, H, W] |
|
- k: 范围大小,表示周围KxK范围内的点 |
|
|
|
返回: |
|
- 输出张量,形状为[B, KxK-1, H, W] |
|
""" |
|
B, C, H, W = input_tensor.shape |
|
|
|
|
|
|
|
|
|
unfold_tensor = F.unfold(input_tensor, k, padding=(k // 2) * dilation, dilation=dilation) |
|
|
|
unfold_tensor = unfold_tensor.reshape(B, C, k**2, H, W) |
|
|
|
|
|
if sim == 'cos': |
|
similarity = F.cosine_similarity(unfold_tensor[:, :, k * k // 2:k * k // 2 + 1], unfold_tensor[:, :, :], dim=1) |
|
elif sim == 'dot': |
|
similarity = unfold_tensor[:, :, k * k // 2:k * k // 2 + 1] * unfold_tensor[:, :, :] |
|
similarity = similarity.sum(dim=1) |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
similarity = torch.cat((similarity[:, :k * k // 2], similarity[:, k * k // 2 + 1:]), dim=1) |
|
|
|
|
|
similarity = similarity.view(B, k * k - 1, H, W) |
|
return similarity |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
|
hr_feat = torch.rand(1, 128, 512, 512) |
|
lr_feat = torch.rand(1, 128, 256, 256) |
|
model = DesneFusion(hr_channels=128, lr_channels=128) |
|
mask_lr, hr_feat, lr_feat = model(hr_feat=hr_feat, lr_feat=lr_feat) |
|
print(mask_lr.shape) |