PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Metrics
The trained PPO agent achieves a mean reward of 370.24 ± 8.90 on LunarLander-v2. This means it consistently lands successfully, demonstrating both high performance and stability across multiple episodes.
Usage (with Stable-baselines3)
check lunarlanding.ipynb for code.
from huggingface_sb3 import load_from_hub, package_to_hub
from huggingface_hub import notebook_login
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.monitor import Monitor
import gymnasium as gym
# First, we create our environment called LunarLander-v2
env = gym.make("LunarLander-v2")
# Then we reset this environment
observation, info = env.reset()
for _ in range(20):
# Take a random action
action = env.action_space.sample()
print("Action taken:", action)
# Do this action in the environment and get
# next_state, reward, terminated, truncated and info
observation, reward, terminated, truncated, info = env.step(action)
# If the game is terminated (in our case we land, crashed) or truncated (timeout)
if terminated or truncated:
# Reset the environment
print("Environment is reset")
observation, info = env.reset()
env.close()
# We create our environment with gym.make("<name_of_the_environment>")
env = gym.make("LunarLander-v2")
env.reset()
print("_____OBSERVATION SPACE_____ \n")
print("Observation Space Shape", env.observation_space.shape)
print("Sample observation", env.observation_space.sample()) # Get a random observation
print("\n _____ACTION SPACE_____ \n")
print("Action Space Shape", env.action_space.n)
print("Action Space Sample", env.action_space.sample()) # Take a random action
env = make_vec_env('LunarLander-v2', n_envs=16)
# Create environment
env = gym.make('LunarLander-v2')
# Instantiate the agent wuth policy
model = PPO(
policy = 'MlpPolicy',
env = env,
n_steps = 1024,
batch_size = 64,
n_epochs = 4,
gamma = 0.999,
gae_lambda = 0.98,
ent_coef = 0.01,
verbose=1)
# SOLUTION
# Train it for 1,000,000 timesteps
model.learn(total_timesteps=1000000)
# Save the model
model_name = "ppo-LunarLander-v2"
model.save(model_name)
#@title
eval_env = Monitor(gym.make("LunarLander-v2", render_mode='rgb_array'))
mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)
print(f"mean_reward={mean_reward:.2f} +/- {std_reward}")
HuggingFace-Training "LunarLander Task" From Deep Reinforcement Learning Course.
- Downloads last month
- 28
Evaluation results
- mean_reward on LunarLander-v2self-reported370.25 +/- 8.94