rtdetr_v2_r18vd-finetuned-indoor-batch8-loss-finall

This model is a fine-tuned version of PekingU/rtdetr_v2_r18vd on the indoor dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7451
  • Map: 0.7714
  • Map 50: 0.9402
  • Map 75: 0.8807
  • Map Small: 0.4279
  • Map Medium: 0.6977
  • Map Large: 0.7784
  • Mar 1: 0.704
  • Mar 10: 0.8268
  • Mar 100: 0.8378
  • Mar Small: 0.4723
  • Mar Medium: 0.7949
  • Mar Large: 0.8414
  • Map Exit: 0.7325
  • Mar 100 Exit: 0.7923
  • Map Fireextinguisher: 0.7845
  • Mar 100 Fireextinguisher: 0.8203
  • Map Chair: 0.7354
  • Mar 100 Chair: 0.8301
  • Map Clock: 0.7962
  • Mar 100 Clock: 0.837
  • Map Trashbin: 0.5619
  • Mar 100 Trashbin: 0.725
  • Map Printer: 0.8914
  • Mar 100 Printer: 0.9375
  • Map Screen: 0.8976
  • Mar 100 Screen: 0.9222

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 25.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Exit Mar 100 Exit Map Fireextinguisher Mar 100 Fireextinguisher Map Chair Mar 100 Chair Map Clock Mar 100 Clock Map Trashbin Mar 100 Trashbin Map Printer Mar 100 Printer Map Screen Mar 100 Screen
0.8218 1.0 112 0.9142 0.6911 0.8734 0.7937 0.2594 0.6244 0.7302 0.6551 0.7783 0.7887 0.3233 0.7267 0.8169 0.6682 0.7519 0.6719 0.7531 0.6624 0.7687 0.761 0.7963 0.3997 0.64 0.8667 0.9 0.8078 0.9111
0.801 2.0 224 0.8670 0.7147 0.8926 0.8306 0.2687 0.62 0.7324 0.6732 0.7871 0.7982 0.3294 0.7339 0.8116 0.6883 0.7577 0.7121 0.7797 0.6997 0.7982 0.7695 0.7889 0.4928 0.685 0.871 0.9 0.7696 0.8778
0.7682 3.0 336 0.9007 0.7075 0.9011 0.8123 0.2875 0.6152 0.7243 0.6701 0.7838 0.794 0.401 0.7275 0.8217 0.687 0.7442 0.7061 0.7741 0.6667 0.7804 0.7607 0.7963 0.4857 0.72 0.8775 0.8875 0.769 0.8556
0.7507 4.0 448 0.8265 0.7392 0.9242 0.8584 0.3972 0.6715 0.7561 0.6817 0.808 0.8202 0.4516 0.7653 0.8352 0.705 0.7654 0.7247 0.7811 0.709 0.8117 0.783 0.8333 0.5202 0.715 0.8842 0.9125 0.848 0.9222
0.7301 5.0 560 0.8271 0.7227 0.9141 0.8282 0.3326 0.6377 0.7385 0.6691 0.7986 0.8064 0.4591 0.7376 0.8487 0.7092 0.7942 0.7371 0.7902 0.7047 0.7969 0.7924 0.8481 0.5106 0.675 0.8083 0.8625 0.7967 0.8778
0.7197 6.0 672 0.8127 0.7561 0.9331 0.8718 0.3553 0.6725 0.7661 0.6901 0.8124 0.8204 0.4527 0.7664 0.8489 0.7203 0.7788 0.7444 0.8007 0.6974 0.8 0.7891 0.8148 0.5839 0.725 0.8725 0.9125 0.8853 0.9111
0.7041 7.0 784 0.7735 0.7637 0.9447 0.8864 0.4044 0.6757 0.7658 0.6935 0.8205 0.8326 0.5206 0.7725 0.8235 0.7446 0.8 0.7543 0.8154 0.7246 0.8209 0.7881 0.8407 0.5854 0.715 0.8675 0.925 0.8814 0.9111
0.7111 8.0 896 0.7977 0.7312 0.9297 0.8389 0.3618 0.6202 0.7366 0.6735 0.7931 0.8146 0.419 0.7552 0.8517 0.7106 0.7981 0.7485 0.8028 0.7261 0.8178 0.7699 0.8074 0.486 0.665 0.8737 0.9 0.8038 0.9111
0.6902 9.0 1008 0.7777 0.7398 0.9262 0.8423 0.4019 0.6672 0.7482 0.6855 0.8141 0.8267 0.4626 0.7678 0.849 0.7328 0.7981 0.7337 0.8035 0.7393 0.8442 0.777 0.8074 0.499 0.685 0.8638 0.9375 0.8332 0.9111
0.6712 10.0 1120 0.7881 0.7498 0.9418 0.8711 0.4102 0.6709 0.7691 0.6778 0.8058 0.815 0.4473 0.7647 0.843 0.6979 0.7712 0.7497 0.8014 0.7325 0.8325 0.7693 0.8111 0.5833 0.725 0.8505 0.875 0.8655 0.8889
0.6763 11.0 1232 0.7937 0.7666 0.9359 0.8797 0.3943 0.6884 0.7803 0.6931 0.8147 0.8237 0.4368 0.7714 0.8322 0.7247 0.7788 0.7458 0.7944 0.727 0.8215 0.7673 0.8037 0.5958 0.695 0.9138 0.95 0.8916 0.9222
0.6792 12.0 1344 0.8028 0.7465 0.9163 0.8525 0.3173 0.6541 0.7807 0.6781 0.8056 0.8187 0.3531 0.7869 0.882 0.7167 0.775 0.7393 0.7874 0.7217 0.8166 0.7675 0.7889 0.5595 0.695 0.886 0.9125 0.8346 0.9556
0.6844 13.0 1456 0.7748 0.7528 0.9263 0.8639 0.3421 0.6686 0.776 0.6968 0.8168 0.8265 0.4386 0.7729 0.8377 0.7173 0.7923 0.7556 0.8021 0.7344 0.8252 0.7799 0.8222 0.5131 0.695 0.9105 0.9375 0.8591 0.9111
0.667 14.0 1568 0.7876 0.7551 0.9325 0.8741 0.3361 0.6796 0.7733 0.6921 0.8056 0.8199 0.3841 0.7683 0.8661 0.7108 0.7865 0.7369 0.793 0.7277 0.8141 0.7921 0.8259 0.5695 0.685 0.8835 0.9125 0.8654 0.9222
0.6596 15.0 1680 0.7691 0.7683 0.9294 0.8897 0.3874 0.6794 0.787 0.6952 0.8234 0.8342 0.4475 0.7897 0.8442 0.7322 0.7923 0.7666 0.8231 0.7281 0.8307 0.8055 0.837 0.5706 0.72 0.8986 0.925 0.8762 0.9111
0.6349 16.0 1792 0.7581 0.7683 0.9414 0.8772 0.3607 0.6942 0.7746 0.7047 0.8307 0.8391 0.4571 0.8117 0.8584 0.7252 0.8019 0.7592 0.8161 0.7307 0.8331 0.8069 0.8444 0.5626 0.72 0.9082 0.925 0.8853 0.9333
0.6433 17.0 1904 0.7571 0.7604 0.9339 0.881 0.3855 0.6851 0.7799 0.6981 0.8191 0.839 0.4629 0.8256 0.8329 0.7378 0.8077 0.7639 0.8168 0.7335 0.835 0.7824 0.8222 0.5558 0.725 0.8643 0.9 0.8849 0.9667
0.6348 18.0 2016 0.7545 0.7708 0.9345 0.8934 0.3228 0.6765 0.7954 0.7003 0.8238 0.8348 0.4469 0.7905 0.8576 0.7379 0.8019 0.7763 0.8182 0.7278 0.8245 0.7998 0.8407 0.5623 0.7 0.9131 0.925 0.8783 0.9333
0.6322 19.0 2128 0.7642 0.7651 0.931 0.8875 0.3233 0.6763 0.7673 0.6998 0.818 0.8329 0.4618 0.7852 0.835 0.7146 0.7827 0.7603 0.8273 0.7405 0.8294 0.795 0.8333 0.54 0.71 0.9184 0.925 0.887 0.9222
0.6219 20.0 2240 0.7587 0.7702 0.9434 0.8849 0.4091 0.6879 0.7744 0.6981 0.8254 0.8447 0.4631 0.8049 0.8641 0.734 0.8019 0.7715 0.8252 0.7387 0.8356 0.8136 0.8481 0.5692 0.72 0.8794 0.9375 0.8849 0.9444
0.6105 21.0 2352 0.7471 0.7701 0.9393 0.8868 0.4202 0.678 0.7805 0.6996 0.8218 0.8356 0.4765 0.7799 0.8389 0.7193 0.7923 0.7781 0.8259 0.7343 0.8337 0.8069 0.8444 0.5684 0.715 0.9144 0.9375 0.8691 0.9
0.6123 22.0 2464 0.7461 0.7691 0.9426 0.8919 0.4237 0.6834 0.7659 0.6897 0.8198 0.8336 0.4648 0.7924 0.8395 0.7271 0.7942 0.7794 0.828 0.7359 0.8301 0.7978 0.8333 0.5777 0.715 0.8965 0.9125 0.8695 0.9222
0.6125 23.0 2576 0.7466 0.7649 0.9344 0.8811 0.4351 0.6806 0.7737 0.6987 0.821 0.8323 0.4805 0.7883 0.8369 0.7274 0.7962 0.7802 0.8259 0.7339 0.8221 0.7908 0.8296 0.5378 0.705 0.911 0.925 0.8735 0.9222
0.616 24.0 2688 0.7563 0.7612 0.9365 0.872 0.4332 0.6812 0.7718 0.698 0.8246 0.8337 0.4809 0.7915 0.8422 0.7376 0.8019 0.7817 0.8273 0.7296 0.8184 0.793 0.8333 0.5472 0.72 0.8612 0.9125 0.8778 0.9222
0.6079 25.0 2800 0.7451 0.7714 0.9402 0.8807 0.4279 0.6977 0.7784 0.704 0.8268 0.8378 0.4723 0.7949 0.8414 0.7325 0.7923 0.7845 0.8203 0.7354 0.8301 0.7962 0.837 0.5619 0.725 0.8914 0.9375 0.8976 0.9222

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
19
Safetensors
Model size
20.1M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Vasily-Lapinsky/Indoor-RT-Detrv2

Finetuned
(2)
this model