rtdetr_v2_r18vd-finetuned-indoor-batch8-loss-finall
This model is a fine-tuned version of PekingU/rtdetr_v2_r18vd on the indoor dataset. It achieves the following results on the evaluation set:
- Loss: 0.7451
- Map: 0.7714
- Map 50: 0.9402
- Map 75: 0.8807
- Map Small: 0.4279
- Map Medium: 0.6977
- Map Large: 0.7784
- Mar 1: 0.704
- Mar 10: 0.8268
- Mar 100: 0.8378
- Mar Small: 0.4723
- Mar Medium: 0.7949
- Mar Large: 0.8414
- Map Exit: 0.7325
- Mar 100 Exit: 0.7923
- Map Fireextinguisher: 0.7845
- Mar 100 Fireextinguisher: 0.8203
- Map Chair: 0.7354
- Mar 100 Chair: 0.8301
- Map Clock: 0.7962
- Mar 100 Clock: 0.837
- Map Trashbin: 0.5619
- Mar 100 Trashbin: 0.725
- Map Printer: 0.8914
- Mar 100 Printer: 0.9375
- Map Screen: 0.8976
- Mar 100 Screen: 0.9222
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 1337
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 25.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Exit | Mar 100 Exit | Map Fireextinguisher | Mar 100 Fireextinguisher | Map Chair | Mar 100 Chair | Map Clock | Mar 100 Clock | Map Trashbin | Mar 100 Trashbin | Map Printer | Mar 100 Printer | Map Screen | Mar 100 Screen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.8218 | 1.0 | 112 | 0.9142 | 0.6911 | 0.8734 | 0.7937 | 0.2594 | 0.6244 | 0.7302 | 0.6551 | 0.7783 | 0.7887 | 0.3233 | 0.7267 | 0.8169 | 0.6682 | 0.7519 | 0.6719 | 0.7531 | 0.6624 | 0.7687 | 0.761 | 0.7963 | 0.3997 | 0.64 | 0.8667 | 0.9 | 0.8078 | 0.9111 |
0.801 | 2.0 | 224 | 0.8670 | 0.7147 | 0.8926 | 0.8306 | 0.2687 | 0.62 | 0.7324 | 0.6732 | 0.7871 | 0.7982 | 0.3294 | 0.7339 | 0.8116 | 0.6883 | 0.7577 | 0.7121 | 0.7797 | 0.6997 | 0.7982 | 0.7695 | 0.7889 | 0.4928 | 0.685 | 0.871 | 0.9 | 0.7696 | 0.8778 |
0.7682 | 3.0 | 336 | 0.9007 | 0.7075 | 0.9011 | 0.8123 | 0.2875 | 0.6152 | 0.7243 | 0.6701 | 0.7838 | 0.794 | 0.401 | 0.7275 | 0.8217 | 0.687 | 0.7442 | 0.7061 | 0.7741 | 0.6667 | 0.7804 | 0.7607 | 0.7963 | 0.4857 | 0.72 | 0.8775 | 0.8875 | 0.769 | 0.8556 |
0.7507 | 4.0 | 448 | 0.8265 | 0.7392 | 0.9242 | 0.8584 | 0.3972 | 0.6715 | 0.7561 | 0.6817 | 0.808 | 0.8202 | 0.4516 | 0.7653 | 0.8352 | 0.705 | 0.7654 | 0.7247 | 0.7811 | 0.709 | 0.8117 | 0.783 | 0.8333 | 0.5202 | 0.715 | 0.8842 | 0.9125 | 0.848 | 0.9222 |
0.7301 | 5.0 | 560 | 0.8271 | 0.7227 | 0.9141 | 0.8282 | 0.3326 | 0.6377 | 0.7385 | 0.6691 | 0.7986 | 0.8064 | 0.4591 | 0.7376 | 0.8487 | 0.7092 | 0.7942 | 0.7371 | 0.7902 | 0.7047 | 0.7969 | 0.7924 | 0.8481 | 0.5106 | 0.675 | 0.8083 | 0.8625 | 0.7967 | 0.8778 |
0.7197 | 6.0 | 672 | 0.8127 | 0.7561 | 0.9331 | 0.8718 | 0.3553 | 0.6725 | 0.7661 | 0.6901 | 0.8124 | 0.8204 | 0.4527 | 0.7664 | 0.8489 | 0.7203 | 0.7788 | 0.7444 | 0.8007 | 0.6974 | 0.8 | 0.7891 | 0.8148 | 0.5839 | 0.725 | 0.8725 | 0.9125 | 0.8853 | 0.9111 |
0.7041 | 7.0 | 784 | 0.7735 | 0.7637 | 0.9447 | 0.8864 | 0.4044 | 0.6757 | 0.7658 | 0.6935 | 0.8205 | 0.8326 | 0.5206 | 0.7725 | 0.8235 | 0.7446 | 0.8 | 0.7543 | 0.8154 | 0.7246 | 0.8209 | 0.7881 | 0.8407 | 0.5854 | 0.715 | 0.8675 | 0.925 | 0.8814 | 0.9111 |
0.7111 | 8.0 | 896 | 0.7977 | 0.7312 | 0.9297 | 0.8389 | 0.3618 | 0.6202 | 0.7366 | 0.6735 | 0.7931 | 0.8146 | 0.419 | 0.7552 | 0.8517 | 0.7106 | 0.7981 | 0.7485 | 0.8028 | 0.7261 | 0.8178 | 0.7699 | 0.8074 | 0.486 | 0.665 | 0.8737 | 0.9 | 0.8038 | 0.9111 |
0.6902 | 9.0 | 1008 | 0.7777 | 0.7398 | 0.9262 | 0.8423 | 0.4019 | 0.6672 | 0.7482 | 0.6855 | 0.8141 | 0.8267 | 0.4626 | 0.7678 | 0.849 | 0.7328 | 0.7981 | 0.7337 | 0.8035 | 0.7393 | 0.8442 | 0.777 | 0.8074 | 0.499 | 0.685 | 0.8638 | 0.9375 | 0.8332 | 0.9111 |
0.6712 | 10.0 | 1120 | 0.7881 | 0.7498 | 0.9418 | 0.8711 | 0.4102 | 0.6709 | 0.7691 | 0.6778 | 0.8058 | 0.815 | 0.4473 | 0.7647 | 0.843 | 0.6979 | 0.7712 | 0.7497 | 0.8014 | 0.7325 | 0.8325 | 0.7693 | 0.8111 | 0.5833 | 0.725 | 0.8505 | 0.875 | 0.8655 | 0.8889 |
0.6763 | 11.0 | 1232 | 0.7937 | 0.7666 | 0.9359 | 0.8797 | 0.3943 | 0.6884 | 0.7803 | 0.6931 | 0.8147 | 0.8237 | 0.4368 | 0.7714 | 0.8322 | 0.7247 | 0.7788 | 0.7458 | 0.7944 | 0.727 | 0.8215 | 0.7673 | 0.8037 | 0.5958 | 0.695 | 0.9138 | 0.95 | 0.8916 | 0.9222 |
0.6792 | 12.0 | 1344 | 0.8028 | 0.7465 | 0.9163 | 0.8525 | 0.3173 | 0.6541 | 0.7807 | 0.6781 | 0.8056 | 0.8187 | 0.3531 | 0.7869 | 0.882 | 0.7167 | 0.775 | 0.7393 | 0.7874 | 0.7217 | 0.8166 | 0.7675 | 0.7889 | 0.5595 | 0.695 | 0.886 | 0.9125 | 0.8346 | 0.9556 |
0.6844 | 13.0 | 1456 | 0.7748 | 0.7528 | 0.9263 | 0.8639 | 0.3421 | 0.6686 | 0.776 | 0.6968 | 0.8168 | 0.8265 | 0.4386 | 0.7729 | 0.8377 | 0.7173 | 0.7923 | 0.7556 | 0.8021 | 0.7344 | 0.8252 | 0.7799 | 0.8222 | 0.5131 | 0.695 | 0.9105 | 0.9375 | 0.8591 | 0.9111 |
0.667 | 14.0 | 1568 | 0.7876 | 0.7551 | 0.9325 | 0.8741 | 0.3361 | 0.6796 | 0.7733 | 0.6921 | 0.8056 | 0.8199 | 0.3841 | 0.7683 | 0.8661 | 0.7108 | 0.7865 | 0.7369 | 0.793 | 0.7277 | 0.8141 | 0.7921 | 0.8259 | 0.5695 | 0.685 | 0.8835 | 0.9125 | 0.8654 | 0.9222 |
0.6596 | 15.0 | 1680 | 0.7691 | 0.7683 | 0.9294 | 0.8897 | 0.3874 | 0.6794 | 0.787 | 0.6952 | 0.8234 | 0.8342 | 0.4475 | 0.7897 | 0.8442 | 0.7322 | 0.7923 | 0.7666 | 0.8231 | 0.7281 | 0.8307 | 0.8055 | 0.837 | 0.5706 | 0.72 | 0.8986 | 0.925 | 0.8762 | 0.9111 |
0.6349 | 16.0 | 1792 | 0.7581 | 0.7683 | 0.9414 | 0.8772 | 0.3607 | 0.6942 | 0.7746 | 0.7047 | 0.8307 | 0.8391 | 0.4571 | 0.8117 | 0.8584 | 0.7252 | 0.8019 | 0.7592 | 0.8161 | 0.7307 | 0.8331 | 0.8069 | 0.8444 | 0.5626 | 0.72 | 0.9082 | 0.925 | 0.8853 | 0.9333 |
0.6433 | 17.0 | 1904 | 0.7571 | 0.7604 | 0.9339 | 0.881 | 0.3855 | 0.6851 | 0.7799 | 0.6981 | 0.8191 | 0.839 | 0.4629 | 0.8256 | 0.8329 | 0.7378 | 0.8077 | 0.7639 | 0.8168 | 0.7335 | 0.835 | 0.7824 | 0.8222 | 0.5558 | 0.725 | 0.8643 | 0.9 | 0.8849 | 0.9667 |
0.6348 | 18.0 | 2016 | 0.7545 | 0.7708 | 0.9345 | 0.8934 | 0.3228 | 0.6765 | 0.7954 | 0.7003 | 0.8238 | 0.8348 | 0.4469 | 0.7905 | 0.8576 | 0.7379 | 0.8019 | 0.7763 | 0.8182 | 0.7278 | 0.8245 | 0.7998 | 0.8407 | 0.5623 | 0.7 | 0.9131 | 0.925 | 0.8783 | 0.9333 |
0.6322 | 19.0 | 2128 | 0.7642 | 0.7651 | 0.931 | 0.8875 | 0.3233 | 0.6763 | 0.7673 | 0.6998 | 0.818 | 0.8329 | 0.4618 | 0.7852 | 0.835 | 0.7146 | 0.7827 | 0.7603 | 0.8273 | 0.7405 | 0.8294 | 0.795 | 0.8333 | 0.54 | 0.71 | 0.9184 | 0.925 | 0.887 | 0.9222 |
0.6219 | 20.0 | 2240 | 0.7587 | 0.7702 | 0.9434 | 0.8849 | 0.4091 | 0.6879 | 0.7744 | 0.6981 | 0.8254 | 0.8447 | 0.4631 | 0.8049 | 0.8641 | 0.734 | 0.8019 | 0.7715 | 0.8252 | 0.7387 | 0.8356 | 0.8136 | 0.8481 | 0.5692 | 0.72 | 0.8794 | 0.9375 | 0.8849 | 0.9444 |
0.6105 | 21.0 | 2352 | 0.7471 | 0.7701 | 0.9393 | 0.8868 | 0.4202 | 0.678 | 0.7805 | 0.6996 | 0.8218 | 0.8356 | 0.4765 | 0.7799 | 0.8389 | 0.7193 | 0.7923 | 0.7781 | 0.8259 | 0.7343 | 0.8337 | 0.8069 | 0.8444 | 0.5684 | 0.715 | 0.9144 | 0.9375 | 0.8691 | 0.9 |
0.6123 | 22.0 | 2464 | 0.7461 | 0.7691 | 0.9426 | 0.8919 | 0.4237 | 0.6834 | 0.7659 | 0.6897 | 0.8198 | 0.8336 | 0.4648 | 0.7924 | 0.8395 | 0.7271 | 0.7942 | 0.7794 | 0.828 | 0.7359 | 0.8301 | 0.7978 | 0.8333 | 0.5777 | 0.715 | 0.8965 | 0.9125 | 0.8695 | 0.9222 |
0.6125 | 23.0 | 2576 | 0.7466 | 0.7649 | 0.9344 | 0.8811 | 0.4351 | 0.6806 | 0.7737 | 0.6987 | 0.821 | 0.8323 | 0.4805 | 0.7883 | 0.8369 | 0.7274 | 0.7962 | 0.7802 | 0.8259 | 0.7339 | 0.8221 | 0.7908 | 0.8296 | 0.5378 | 0.705 | 0.911 | 0.925 | 0.8735 | 0.9222 |
0.616 | 24.0 | 2688 | 0.7563 | 0.7612 | 0.9365 | 0.872 | 0.4332 | 0.6812 | 0.7718 | 0.698 | 0.8246 | 0.8337 | 0.4809 | 0.7915 | 0.8422 | 0.7376 | 0.8019 | 0.7817 | 0.8273 | 0.7296 | 0.8184 | 0.793 | 0.8333 | 0.5472 | 0.72 | 0.8612 | 0.9125 | 0.8778 | 0.9222 |
0.6079 | 25.0 | 2800 | 0.7451 | 0.7714 | 0.9402 | 0.8807 | 0.4279 | 0.6977 | 0.7784 | 0.704 | 0.8268 | 0.8378 | 0.4723 | 0.7949 | 0.8414 | 0.7325 | 0.7923 | 0.7845 | 0.8203 | 0.7354 | 0.8301 | 0.7962 | 0.837 | 0.5619 | 0.725 | 0.8914 | 0.9375 | 0.8976 | 0.9222 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Vasily-Lapinsky/Indoor-RT-Detrv2
Base model
PekingU/rtdetr_v2_r18vd