flausch_span_gbert-large_non_labeled_spans

This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1736
  • Model Preparation Time: 0.0411
  • Precision: 0.6750
  • Recall: 0.7428
  • F1: 0.7073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1
0.2595 0.4233 750 0.1754 0.0411 0.5105 0.6319 0.5648
0.1821 0.8465 1500 0.1683 0.0411 0.5954 0.6371 0.6156
0.1394 1.2698 2250 0.1649 0.0411 0.5722 0.6831 0.6228
0.1099 1.6930 3000 0.1547 0.0411 0.6677 0.7224 0.6940
0.0989 2.1163 3750 0.1507 0.0411 0.6429 0.7309 0.6841
0.0605 2.5395 4500 0.1712 0.0411 0.6724 0.7399 0.7046
0.0603 2.9628 5250 0.1736 0.0411 0.6750 0.7428 0.7073

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
20
Safetensors
Model size
335M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Wiebke/flausch_span_gbert-large_non_labeled_spans

Finetuned
(29)
this model