flausch_span_gbert-large_non_labeled_spans
This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1736
- Model Preparation Time: 0.0411
- Precision: 0.6750
- Recall: 0.7428
- F1: 0.7073
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.2595 | 0.4233 | 750 | 0.1754 | 0.0411 | 0.5105 | 0.6319 | 0.5648 |
0.1821 | 0.8465 | 1500 | 0.1683 | 0.0411 | 0.5954 | 0.6371 | 0.6156 |
0.1394 | 1.2698 | 2250 | 0.1649 | 0.0411 | 0.5722 | 0.6831 | 0.6228 |
0.1099 | 1.6930 | 3000 | 0.1547 | 0.0411 | 0.6677 | 0.7224 | 0.6940 |
0.0989 | 2.1163 | 3750 | 0.1507 | 0.0411 | 0.6429 | 0.7309 | 0.6841 |
0.0605 | 2.5395 | 4500 | 0.1712 | 0.0411 | 0.6724 | 0.7399 | 0.7046 |
0.0603 | 2.9628 | 5250 | 0.1736 | 0.0411 | 0.6750 | 0.7428 | 0.7073 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Wiebke/flausch_span_gbert-large_non_labeled_spans
Base model
deepset/gbert-large