task2_flausch_classification_gbert-large_span_classifier_with_nonspan
This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2307
- Accuracy: 0.9479
- F1: 0.9467
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.3749 | 0.2697 | 1000 | 0.3099 | 0.9149 | 0.9174 |
0.2804 | 0.5394 | 2000 | 0.2330 | 0.9371 | 0.9305 |
0.2672 | 0.8091 | 3000 | 0.2369 | 0.9391 | 0.9339 |
0.2248 | 1.0787 | 4000 | 0.2295 | 0.9427 | 0.9406 |
0.1942 | 1.3484 | 5000 | 0.2244 | 0.9452 | 0.9422 |
0.1873 | 1.6181 | 6000 | 0.2310 | 0.9423 | 0.9393 |
0.1768 | 1.8878 | 7000 | 0.2155 | 0.9469 | 0.9450 |
0.1443 | 2.1575 | 8000 | 0.2295 | 0.9454 | 0.9449 |
0.1198 | 2.4272 | 9000 | 0.2295 | 0.9484 | 0.9474 |
0.1238 | 2.6969 | 10000 | 0.2278 | 0.9479 | 0.9469 |
0.1166 | 2.9666 | 11000 | 0.2307 | 0.9479 | 0.9467 |
Framework versions
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 2.14.4
- Tokenizers 0.21.1
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Wiebke/task2_flausch_classification_gbert-large_span_classifier_with_nonspan
Base model
deepset/gbert-large