task2_flausch_classification_gbert-large_span_classifier_with_nonspan

This model is a fine-tuned version of deepset/gbert-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2307
  • Accuracy: 0.9479
  • F1: 0.9467

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.3749 0.2697 1000 0.3099 0.9149 0.9174
0.2804 0.5394 2000 0.2330 0.9371 0.9305
0.2672 0.8091 3000 0.2369 0.9391 0.9339
0.2248 1.0787 4000 0.2295 0.9427 0.9406
0.1942 1.3484 5000 0.2244 0.9452 0.9422
0.1873 1.6181 6000 0.2310 0.9423 0.9393
0.1768 1.8878 7000 0.2155 0.9469 0.9450
0.1443 2.1575 8000 0.2295 0.9454 0.9449
0.1198 2.4272 9000 0.2295 0.9484 0.9474
0.1238 2.6969 10000 0.2278 0.9479 0.9469
0.1166 2.9666 11000 0.2307 0.9479 0.9467

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.1
Downloads last month
16
Safetensors
Model size
336M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Wiebke/task2_flausch_classification_gbert-large_span_classifier_with_nonspan

Finetuned
(29)
this model