Segformer Fine-Tuned on Custom Sky/Sea/Obstacle Dataset
This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512
on a custom dataset with 3 semantic classes:
- Sky
- Sea
- Obstacle
It is intended for use in vision-based autonomous surface navigation and maritime scene understanding.
Model Details
Model Description
- Base architecture: SegFormer-B0
- Pretrained on: ADE20K dataset
- Fine-tuned for: Semantic segmentation on maritime images
- Number of classes: 3
- Ignore index: 255
- Resolution: 512×512 input images
- Training precision: fp32
- Framework: PyTorch with 🤗 Transformers
Model Sources
- Base model:
nvidia/segformer-b0-finetuned-ade-512-512
- Codebase: Uses Hugging Face Transformers + Datasets
Usage
from transformers import AutoModelForSemanticSegmentation, AutoImageProcessor
from PIL import Image
import torch
# Load model and processor
model = AutoModelForSemanticSegmentation.from_pretrained("Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325")
processor = AutoImageProcessor.from_pretrained("Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325")
# Load and preprocess an image
image = Image.open("example.jpg").convert("RGB")
inputs = processor(images=image, return_tensors="pt")
# Inference
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits # [1, num_classes, H, W]
pred_seg = logits.argmax(dim=1) # [1, H, W]
- Downloads last month
- 148
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Wilbur1240/segformer-b0-finetuned-ade-512-512-finetune-mastr1325
Base model
nvidia/segformer-b0-finetuned-ade-512-512