WilliamSotoM's picture
Update README.md
7067652 verified
metadata
language:
  - es
license: mit
library_name: peft
tags:
  - peft
  - text2text-generation
  - text-generation
base_model: google/mt5-large

PTHQL_language_Limburgish

This is the Spanish (spa_Latn) Phylogenetic Tree Hierarquical QLoRAs (PTHQL) adapter from Generating from AMRs into High and Low-Resource Languages using Phylogenetic Knowledge and Hierarchical QLoRA Training (HQL) used for AMR-to-Text generation.

Use

This model is the last of 4 hierarquical LoRAs. It is strongly adviseable to load all 4 LoRAs in order.

The following is minimal code to generate Spanish text from an AMR graph:

from transformers import MT5ForConditionalGeneration, AutoTokenizer
from peft import PeftModel

model = MT5ForConditionalGeneration.from_pretrained('google/mt5-large')
tokennizer = AutoTokenizer.from_pretrained('google/mt5-large')

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level0_Indo_European')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level1_Romance')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_level2_Iberian_Romance')
model = model.merge_and_unload()

model = PeftModel.from_pretrained(model, 'WilliamSotoM/PTHQL_language_Spanish')
model = model.merge_and_unload()

graph = '''
(w / want-01
   :ARG0 (b / boy)
   :ARG1 (b2 / believe-01
             :ARG0 (g / girl)
             :ARG1 b))
'''
tokenized_input = tokenizer(graph, return_tensors='pt')

with torch.inference_mode():
    prediction = model.generate(**tokenized_input)
    generated_text = tokenizer.batch_decode(prediction, skip_special_tokens=True)[0]

print(f'Generated text:', generated_text)

Expected outpu:

El chico quiere que la chica le crea.