Mistral-7B-v0.3-Middo-Alpaca

Paper: Middo: Model-Informed Dynamic Data Optimization for Enhanced LLM Fine-Tuning via Closed-Loop Learning

Code: https://github.com/Word2VecT/Middo

Model description

This model is a fine-tuned version of mistralai/Mistral-7B-v0.3 on the MiddOptimzed/llama_alpaca dataset.

Training and evaluation data

Training data

Middo optimized Alpaca on mistralai/Mistral-7B-v0.3.

Evaluation data

  • General
    • MMLU
    • IFEval
  • Math
    • GSM8K
    • MATH
  • Code
    • HumanEval
    • MBPP
  • Reasoning
    • Hellaswag
    • GPQA

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 256
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1.0

Training results

  • epoch: 1.0
  • total_flos: 1.387246770039292e + 18
  • train_loss: 1.0000714727661066
  • train_runtime: 2851.6353
  • train_samples_per_second: 20.461
  • train_steps_per_second: 0.08

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.5.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
7.25B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train Word2Li/Mistral-7B-v0.3-Middo-Alpaca

Collection including Word2Li/Mistral-7B-v0.3-Middo-Alpaca

Evaluation results