license: gpl-3.0 | |
library_name: transformers.js | |
tags: | |
- apisr | |
- super-resolution | |
pipeline_tag: image-to-image | |
https://github.com/Kiteretsu77/APISR with ONNX weights to be compatible with Transformers.js. | |
## Usage (Transformers.js) | |
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: | |
```bash | |
npm i @huggingface/transformers | |
``` | |
**Example:** Upscale an image with `Xenova/4x_APISR_GRL_GAN_generator-onnx`. | |
```js | |
import { pipeline } from '@huggingface/transformers'; | |
// Create image-to-image pipeline | |
const upscaler = await pipeline('image-to-image', 'Xenova/4x_APISR_GRL_GAN_generator-onnx', { | |
dtype: "fp32", | |
}); | |
// Upscale an image | |
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/anime.png'; | |
const output = await upscaler(url); | |
// RawImage { | |
// data: Uint8Array(16588800) [ ... ], | |
// width: 2560, | |
// height: 1920, | |
// channels: 3 | |
// } | |
// (Optional) Save the upscaled image | |
output.save('upscaled.png'); | |
``` | |
<details> | |
<summary>See example output</summary> | |
Input image: | |
 | |
Output image: | |
 | |
</details> | |
 | |
--- | |
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`). |