https://huggingface.co/thenlper/gte-small with ONNX weights to be compatible with Transformers.js.

Usage (Transformers.js)

If you haven't already, you can install the Transformers.js JavaScript library from NPM using:

npm i @xenova/transformers

You can then use the model to compute embeddings like this:

import { pipeline } from '@xenova/transformers';

// Create a feature-extraction pipeline
const extractor = await pipeline('feature-extraction', 'Xenova/gte-small');

// Compute sentence embeddings
const sentences = ['That is a happy person', 'That is a very happy person'];
const output = await extractor(sentences, { pooling: 'mean', normalize: true });
console.log(output);
// Tensor {
//   dims: [ 2, 384 ],
//   type: 'float32',
//   data: Float32Array(768) [ -0.053555335849523544, 0.00843878649175167, ... ],
//   size: 768
// }

// Compute cosine similarity
import { cos_sim } from '@xenova/transformers';
console.log(cos_sim(output[0].data, output[1].data))
// 0.9798319649182318

You can convert this Tensor to a nested JavaScript array using .tolist():

console.log(output.tolist());
// [
//   [ -0.053555335849523544, 0.00843878649175167, 0.06234041228890419, ... ],
//   [ -0.049980051815509796, 0.03879701718688011, 0.07510733604431152, ... ]
// ]

By default, an 8-bit quantized version of the model is used, but you can choose to use the full-precision (fp32) version by specifying { quantized: false } in the pipeline function:

const extractor = await pipeline('feature-extraction', 'Xenova/gte-small', { quantized: false });

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using 🤗 Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named onnx).

Downloads last month
3,145
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support feature-extraction models for transformers.js library.

Model tree for Xenova/gte-small

Base model

thenlper/gte-small
Quantized
(3)
this model